HayuHbiit )kypHan HUY UTMO. Cepua « DKOHOMMKA U 3KONOTUYECKUA MEHEOKMEHT» Ne 3,2014

YK 637.02.73

Improved and Accelerated Multiresolution
Linear Algorithm for Data Clustering

Smirnov Arthur A. asmirn3@uic.edu
University of Illinois at Chicago, Chicago, IL, USA
Sharlay Valery V.

St Petersburg State University of Aerospace Instrumentation
194021 St. Petersburg, Bolshaya Morskaya St., 67
Mehta Parth J.

Amazon USA
Seattle, State of Washington, USA

The paper describes one of the important problems related to databases — clustering problems.
Clustering issues have been very important in research in the past not only in the area of database
management but also in information security. We are describing what this new method does and how it
improves. We develop a new method for local correlation clustering.

Keywords: Artificial Intelligence Techniques, Data Clustering, Databases, MDL method

Yiay4lieHHbIN U YCKOPEHHBbIN MYJbTUMACIUTAOHBINA JUHEHHBINA AJITOPUTM
KJIacTepu3aluu JaHHbIX

CmupHoB A.A.
Yuusepcumem wim. Unnunouc ¢ Yuxaeo, CLLIA

Ilapaaii B.B.

Canxm-Ilemepoypeckuii I'ocyoapcmeennwiii Ynusepcumem Aspoxocmuueckozo Ilpubopocmpoernus
190000, Canxm-Ilemepbype, ya. bonvwas Mopckas, 0. 67

Mexta ITapt k. Pmehta25@uic.edu
Cuosma, wumam Bawunemon, CILIIA

annasa cmamovsa onucvigaem 6ajcHvlie nNpooIEMbl, C6A3AHHbIE C 0A30ll OAHHBIX — NPOOIEMbl
knacmepuzayuu. IIpodaemovl Knacmepuzayuu A61410mMca 00601bHO-MAKU 6ANCHHIMU HA NPOMANHCEHUU
00712020 6pemeHu He MmOJbKO 6 pazleie YnpaeieHus 0azamu OAHHBIX, HO U 6 Mepax 3aujumol
ungopmauuu. Mvl onuceieaem, Kax o0vl1 pazpaboman OauHwvlit memoo. Mbvl pazpabomanu HoO6bwlil
Memoo 011 10KANbHOU KOPPEeNAYUU Kaacmepusayuu.

Knioueevie cnosa: TexHUKN UCKYCCTBEHHOTO MHTEIJIEKTA, KJacTepU3allvs JaHHBIX, 0a3bl JaHHBIX,
METOJ MUHUMAJIHLHOTO OIMCAHMS IJTUHBI.

693



HayuHbiit )kypHan HUY UTMO. Cepua « DKOHOMMKA U 3KONOTUYECKUA MEHEOKMEHT» Ne 3,2014

Introduction

In this paper we are presenting the new method for linear clustering[1]. This is a fast
algorithm that locates and then marks in smaller spaces of big-size data — in multidimensional
data. The current methods are mostly space and time super-linear [2]. Our method was designed
in such way so it improves the basic methods by providing an enhanced and optimized
implementation strategy for the counting tree. This method will be able to handle cases when
the whole tree is not suitable in memory. Since this could be the case — then operational system
disk cache issue should be given a serious consideration. Our idea was to describe the tree in
tables which will be located in main memory. Each level is representing a certain level of the
tree. The tables consist of key entries.

Methodology

There exists a group of different cluster search algorithms which vary by many factors.
Those cluster search algorithms find a few dislocated clusters in all the subsets which cause
producing some overlapping clusters [3]. One of the most common problems these days face an
issue of the objects being defined such as it is independent of the particular algorithm to detect
these clusters. The second important problem that these algorithms face is the definition of the
density — this definition is based on user-defined parameters which makes it hard to mark up the
clusters in big sets of data. We redefined a new way of how the problem can be formulated that
works at extracting parallel regions that have been marked up in the data sets.

The detection of correlations between different features in a certain set of data is a very
important task due to the following reason: the correlation has an ability to show whether or not
the features are dependent. There is a well-known algorithm called the principal components
analysis (PCA) which can shown whether a linear, global or multidimensional dependency can
be shown [7]. The method we develop has a determinate result and is therefore very robust.
Clustering can be a very time and space consuming task and may also suffer from the curse of
dimensionality and similar functions that use all input features with equal relevance which may
not that very efficient. Our idea is to present such an algorithm that will be discovering clusters
in smaller spaces (subspaces) spanned by different combinations of dimensions via local
weighs of features. This approach avoids any risk of loss of information encountered in the
global dimensionality reductions techniques. We associate each clusters with a weighted vector;
the weight of such vectors depends on relevance of nearby features around a corresponding
vector.

Design of System & Classification

694



HayuHbiit )kypHan HUY UTMO. Cepua « DKOHOMMKA U 3KONOTUYECKUA MEHEOKMEHT» Ne 3,2014

The system consists of three different levels. The top level is Halite. The second level
contains four main elements: Dimension, Usability, Efficiency, and Generality. The bottom
level consists of five elements listed in the order: Time, Clustering Area, Clustering Sub-Area,
Results, Speed; all the elements listed herein produce the outcome into the database storage,
which is the final product of this scheme. Please refer to the scheme below:

HALITE

4 £ 4 4

DIMENSION (D) USABILITY (U) EFFICIENCY (E) GENERALITY (G)

CLUSTERING SUB-AREA

TIME (T) CLUSTERING AREA (CA) RESULTS (R) SPEED (S)

(CsA)

DATABASE

Fig.1 — Design of System

The dataset has to be partitioned in such a way that each point can only belong to one
cluster (meaning that the same point cannot belong to two different clusters regardless of how
the clusters are divided)[3]. The same rule is applicable when the system is a multidimensional
system.

Since the information has to be protected, we have to encode the input data by selecting
the minimum description length (MDL method) [6, 7]. This method is used on the top Halite
level in order to automatically set up the value of the density threshold. This level also includes
a compression-based analysis to mark up the points that are potentially suspicious of belonging
to more than one cluster (it could be two or three adjacent clusters).

The next stage of our algorithms implies looking for B clusters. B clusters are detected by
applying a variety of convolution masks over each level of the counting tree. Counting trees are
such trees that are made of tables and being stored in the main memory. The content of the

695



HayuHbiit )kypHan HUY UTMO. Cepua « DKOHOMMKA U 3KONOTUYECKUA MEHEOKMEHT» Ne 3,2014

counting trees stores value entries of the data related to all non-empty cells. The masks are
integers that are outcomes of the Laplacian Filter, a second derivative operator that acts based
upon the transitions in density.

Since Halite method for local correlation has a linear space complexity, thus the numbers of
points and clusters will be defined at some point. In this implementation of the method, we
found out that we require about 30-48% of the data size (amount of memory depends on the
distribution of the points). In this case we may face a severe problem if a large dataset is
presented. In such case we have to use the operational system’s disk cache which at some point
eventually may become a bottleneck. In order to overcome this issue, Halite method has a table-
based implementation that never uses disk cache regardless of the input dataset. By using this
little trick, we can analyze large datasets easily. We would have to represent the counting trees
by tables that are stored in the main memory or on the disk. Each table will be representing only
one level of the tree which will be storing the same information listed above in the tree
description.

Testing Data

The peak question for us was to properly test large amounts of data. We got a large set of
data from Amazon Web Services (AWS). This dataset consists of about 500,000 records and
each record is being described by 35 unique categories in which the data can be split into other
1,000 different sub-categories. We tested our algorithm in two different ways on this large
dataset. The first implementation was to using the scalability of the algorithm against the
number of clusters for a certain given number of objects for a given number of clusters. In order
to get the most accurate results, we used the same machine to run both algorithms — Sun
Enterprise 6000, a unix-based server with a single processor. The results of running these
algorithms will be presented in the final part of this paper. But, we can state that the results are
encouraging. We can clearly see a linear increase in the number of both, clusters and records. It
took us 57 min. to cluster all the records into 120 clusters. Many different artificial intelligent
techniques can be applied in comparing results of running various algorithms.[5] We assume
that this running time is acceptable in this case due to a large number of records. When
compared, this algorithm is much faster in operating versus when the data consisting of mixed
values is being clustered. The main factor in this case is a number of iterations that have to be
implemented over the whole dataset.

One of the proposals on how to improve and expedite these algorithms would be is run
these algorithms simultaneously on multiple processors which will get us better results. The
other main issue that has to be taken care of is parallelizing an allocation operation of the
objects.

696



HayuHbiit )kypHan HUY UTMO. Cepua « DKOHOMMKA U 3KONOTUYECKUA MEHEOKMEHT» Ne 3,2014

Results

We have compared different algorithms and the graph below demonstrates obtained results:

.
Halite HARP

08

L]
COPAC o Halite
EPCH

06 EPCH

« COPAC

Clustering Quality

04

HARP

02

] Seconds
1 10 100 1000 10000

As the graph above shows, Halite method beats all other three methods that we used in the
project. Main two parameters that we consider important are the time and the quality of
clustering[4]. The scale of clustering quality was translated from 100% to 1 for easier
understanding. The other important parameter was amount of time taken to run the algorithm —
as see above, the fastest one is Halite. The second fast algorithm is EPCH, it takes about 22 sec
to run the algorithm all the way. The slowest one is HAPR, although its efficiency is higher
than EPCH, which is the second fast one and COPAC, which is faster than HAPR but is less
quality.

Overall, it is obvious that using Halite method will be both fast and qualitative. The
second algorithm which we would recommend to use is HAPR, but it takes more time, but on
the other hand, this algorithm is easier to implement. The middle version of all these algorithms
iIs COPAC that is a bit less qualitative but a bit faster than HARP.

References (Cnucok JutepaTypbl)

1. Jagadish, H. V. "Linear clustering of objects with multiple attributes.” ACM SIGMOD
Record. Vol. 19. No. 2. ACM, 1990.

2. Nagashima, Umpei, et al. "An experience with super-linear speedup achieved by parallel
computing on a workstation cluster: Parallel calculation of density of states of large scale
cyclic polyacenes.” Parallel computing 21.9 (1995): 1491-1504.

3. Jain, Anil K., M. Narasimha Murty, and Patrick J. Flynn. "Data clustering: a
review." ACM computing surveys (CSUR) 31.3 (1999): 264-323.

697



HayuHbiit )kypHan HUY UTMO. Cepua « DKOHOMMKA U 3KONOTUYECKUA MEHEOKMEHT» Ne 3, 2014

4.

Jain, Anil K. "Data clustering: 50 years beyond K-means." Pattern Recognition
Letters 31.8 (2010): 651-666.

Smirnov, Arthur. Artificial intelligence: Concepts and Applicable Uses. LAP LAMBERT
Academic Publishing, 2013

Koivisto, M. "An MDL Method for Finding Haplotype Blocks and for Estimating the
Strength of Haplotype Block Boundaries M. Koivisto, M. Perola, T. Varilo, W. Hennah,
J. Ekelund, M. Lukk, L. Peltonen, E. Ukkonen, H. Mannila Pacific Symposium on
Biocomputing 8: 502-513 (2003)." Pacific Symposium on Biocomputing. Vol. 8. 2003.
Huang, Lei, and Shunjun Wu. "Low-complexity MDL method for accurate source
enumeration." Signal Processing Letters, IEEE 14.9 (2007): 581-584.

Wilson, Robert P., et al. "SUIF: An infrastructure for research on parallelizing and
optimizing compilers." ACM Sigplan Notices 29.12 (1994): 31-37.

Jolliffe, lan. Principal component analysis. John Wiley & Sons, Ltd, 2005.

698



