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Abstract

Subject of Study. The paper deals with further development of the method of computational experiments for solving ill-
posed problems, e.g., the inverse spectroscopy problem. This method produces an effective (nonoverstated) estimate for
solution error of the first-kind equation. Method of Research. An equation is solved by the Tikhonov regularization method.
We have obtained nonoverstated estimate for solution error and a new principle for choosing the regularization parameter on
the basis of the truncating singular number spectrum of an operator. It is proposed to estimate the truncation magnitude by
results of solving model (training, learning) examples close to an initial example (problem). This method takes into account
an additional information about the solution. Main Results. We have derived a new, more accurate estimate for regularized
solution error using the truncation parameter g. Ways for determining g according to the results of solving model examples
are proposed. The method of modeling or training is applied to solving the inverse spectroscopy problem (restoration of a
fine spectrum structure by solving integral equation on the basis of an experimental spectrum and the spread function of a
spectral device). The method makes it possible to resolve close lines and select weak lines. Practical Relevance. The
proposed method can be used to restore smoothed and noisy spectra, in other words, to enhance the resolution of spectral
devices by mathematical and computer processing of experimental spectra.
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SI3pIK cTaThU — aHNMHCKUI

Ccbuika ais nurupoBanusi: Cusuxos B.C., CrenanoB A.B. Cnoco6 o6ydaronux IpEMepoB B PEIICHHN OOPAaTHBIX HEKOPPEKTHBIX 3a1ad
criekrpockonuy // HayaHo-TexHnueckuil BeCTHUK HH(GOPMALMOHHBIX TEXHOJIOTH, MexaHuky 1 ontukd. 2015. T. 15. Ne 6. C. 1147-1154.
AHHOTALUA

Ipenmert ucciaenoBanus. JJano nanbHelIIee pa3BUTHE CII0c00a BEIYUCIUTEIBHBIX S9KCIEPHIMEHTOB PELIEHHST HEKOPPEKTHBIX
3aja4, HaIpuMep, oOpaTHOM 3a/1a4M CIIEKTPOCKONUH. DTOT CIOCOO MO3BOJSIET MONYyYUTh d(PPEKTHBHYIO (HE3aBBILICHHYIO)
OLIEHKY MOTPEIIHOCTH DELIEHUs] YpPaBHCHMs IepBOro poza. Metold. VYpaBHEHHE pelIaeTCs METOIOM peryispu3aluu
Tuxonosa. [lomxydeHsl He3aBBIIIEHHAs OLICHKA MTOTPEIIHOCTH PEIICHH M HOBBIH COCO0 BBIOOpA mapameTpa peryaspu3aniu
Ha OCHOBE HCIOJb30BAaHUS YCEUEHUs CIIEKTpa CUHIYJSAPHBIX 4HCed oneparopa. BemuuumHy yceueHus mpeiaraercs
OLICHHBATH 110 PE3yJbTaTaM PELICHHUs] MOMACIBHBIX MM O0ydYaroluX MPUMEpOB, «OIU3KUAX» MUCXOTHOMY IpHUMeEpy (3amade).
JaHHBIH CIOCOO YYUTHIBACT AOMONHHUTENbHYI0 HHpOpManuio o pemieHnd. OCHOBHON pe3yabTar. BriBeneHa HoBasi, Oomee
TOYHAs OLEHKAa IOrPEIIHOCTH PEry/lsApU30BaHHOIO PELICHUS C HUCIOIb30BaHMEM IapaMmeTrpa yceueHus g. IlperioxeHsl
CIIOCOOBI ONpEZeNeHHsl g MO pe3ylbraTaM pEeIICHHUS MOJCNBHBIX IpuMepoB. Croco® MOIEIMpOBaHHS WIN OOydYCHUS
NPUMEHEH K PEeIICHHUIO OOpaTHOH 3a1aud CIIEKTPOCKONUH (BOCCTAHOBJICHUIO TOHKOH CTPYKTYpPBI CHEKTpa IyTeM pPEeIICHHUS
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CMNocob OBYHAKOLWKMX NMPUMEPOB B PELLEHNWN OBPATHLIX HEKOPPEKTHbIX...

HHTErPAIbHOTO YPAaBHEHUS Ha OCHOBE SKCIIEPUMEHTAJIBHOIO CHEKTPa M annapaTHOi (yHKIMH CIEKTpaJbHOTrO mpubopa).
Crioco6 Mmo3BONIMIT Pa3peIuTh OMM3KHE JMHUHM U BbIIEIUTH ciaadble uHud. IlpakTnyeckas 3HauyuMocTtsh. [Ipeanoxennas
METOJIMKA MOXKET OBITh HCIIOJIb30BaHA MUl BOCCTAHOBIICHHS 3aIVI)KCHHBIX M 3aLIyMIICHHBIX CHEKTPOB, IPYTHMMH CIIOBAMH,
JUISL TIOBBIICHHS pa3pellaionieil CIOCOOHOCTH CIIEKTPaJbHBIX HPUOOPOB IIyTEM MATEMAaTHYECKOW M KOMIIBIOTEPHOM
00pabOTKH KCIIEPUMEHTAIBHBIX CIIEKTPOB.

KuroueBble cj10Ba: HEKOPPEKTHBIE 3aa4d, METOJ PETYIsIpU3alMu THXOHOBA, MOTPEIIHOCTh PEHIEHHUs, CIIOCO0 00ydaroNnx
MIpUMEpoB, oOpaTHasi 3ajada CIEKTPOCKOIINH, MHTErPaJbHOE YpaBHEHWE, amlmaparHas (yHKIHS CIIEKTPaIbHOTO Mpuodopa,
HU3MEPEHHBIH CIIEKTp, 00yJaIoNIie CIIEKTPhI, BOCCTAHOBICHHBIN CIEKT.

BaaropaprocTu. Pabora Beinonnena npu nognepxke POOU (rpant Ne 13-08-00442).
Introduction

As is well known [1-4], it is practically impossible to obtain an effective (nonoverstated) error estimate
for solution of ill-posed problem, e.g., the inverse spectroscopy problem without an additional (a priori)
information about the solution. In this paper, we develop an adaptive method of computational experiments for
estimating the solution error and choosing the regularization parameter o in solving ill-posed problems by the
Tikhonov regularization method. The method is also known as: the technique of model, standard, learning,
training examples, the way of the pseudoinverse operator [1-8]. This method takes into account an additional (a
priori) information about the desired solution (an estimate of the number of maxima, their abscissas and
ordinates, etc.) and, in this respect, resembles the methods such as the Tikhonov a-regularization with
constraints on the solution [9], solution on a compact [4, 9], the methods of descriptive regularization [10], also
taking into account a priori information on the solution (nonnegativity, monotonicity, convexity, parameters of
extrema, etc.). However, the specific implementation of the method of computational experiments differs from
these methods.

This method has been earlier developed and applied to signal processing [1-3], image restoration [5, 6]
and spectroscopy [5—8]. In this paper, we propose its modification and application to the inverse problem of
spectroscopy.

Basic relations

Consider an operator equation of the first kind

Ay=f, yeY, feF, (1
where y is desired, and f'is given elements of Hilbert spaces Y and F; A4 is a linear bounded operator from Y into
F. The operator 4 is not expected to be continuously invertible, i.e. the problem of solving equation (1) is ill-
posed. However, for the exact f'we assume that equation (1) is solvable.

The problem is to find an element y € Y with minimal norm, which supplies the minimum value for the

discrepancy || Ay — f || and which is the pseudosolution, in particular, the normal solution [4, 9, 11].

In the zero-order Tikhonov regularization method [4, 9, 11, 12], giving one of the most effective ways for
obtaining pseudosolutions, instead of (1) the equation

(QE+B)y,=Af, 2)
is solved, where
A:A'i‘AA, j=f+Af9 ya:y+Aya’ (3)

moreover, 4, f and y are the exact operator and elements; A4, /; and y, are their practical values; A4, Af and

Ay, are their errors; a > 0 is the regularization parameter; B =A4"4; E is the unit operator.
Estimate of solution error. Consider the question of estimating the error Ay, of the regularized solution
v, and choosing the regularization parameter o.

It is known [13] that it is almost impossible to obtain an effective (nonoverstated) estimate of the error
Ay, without using additional (a priori) information on the solution. In this paper, we propose to use the results

of solving “close” model (learning) examples as additional information. Taking into account the ratio
A Ay = A" f, which follows from (1), as well as the ratios (2) and (3), we obtain
(AE+B)Ay, = —(0E + A'Ad)y + A'Af
or
Ay, =(aE+B)" A (Af ~Ady)-o(aE+B) 'y,
from where we find the following estimates in the norm of absolute and relative errors of the regularized solution
1Ay, I @E+BY A" ||-(1AF |+ A4 ][l y D+ o[ (@E+B) [l vl
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A Sa—1 * A ~
S CRN ||-(%+||M||j+an(amb’)l|. )
Taking into account that || 4|-[| y ||2|| || or 1/||¥[I<|| 4]|/ll /]|, we obtain the estimate (4) for the relative

error of the regularized solution in the form

A - -
%(a)s%sn(amm VI AN G +E0)+ | (E+ BY |, )
where
] g
rel > &rel -
Kal 141

are the relative errors of the right-hand side f and operator 4. The right-hand side of (5) is the upper envelope of
the true relative error o, (o) . The first summand in the right-hand side of (5) is due to the errors of data, while

the second summand is determined by regularization. In (5), we have (cf. [14-17]): || (@E+B)" 4" ||<1/(2Va),
and norm || (aE+B)"|| can be expressed through minimum singular number p of symmetric positively
determined operator a.E + B :
[ (@E +BY" ||= 1/, (0E + B) =1/ (00 + 1., (B)) .
We obtain (cf. [14-17]):
A ~
o @l WA« ©
Iyl 2Jo  atp,,(B)
where n=90,_, +&

rel *

However, in practice, estimate (6) (as well as (5)) may give a significant overstatement for o, (a),
since, in case of ill-conditioned and ill-posed problems, .. (B) is close or equal to zero and then (when
umin (E) = 0 )

A A

P I I

Iyl 2Va

The estimate (7) is not only overstated, but not having the minimum with respect to o.
To obtain more effective estimate of &,,(ct) we use the concept of the pseudoinverse operator having

O

enclosed in it, however, a sense somewhat different from the pseudo-inverse Moore—Penrose matrix A" which
gives the solution y = A" f [4, 12, 18] and from the regularized operator (o.E + B)"' 4" which gives the solution

v, =(0E+ B)' A" f . The point is that 4" corresponds to the case o —0, . (B)#0, while regularization is
dealing with a finite value of o >0 and p, (B) ~ 0, which leads to an overstatement of &, () in both cases.
In order to bring the estimate o, (c) nearer to the true estimate of o (o), we fruncate the spectrum of

the operator (matrix in the discrete case) B from below, namely, instead of Wonin (B) we use a value g > Wonin (B)
and write (6) in the form

o) =12l <o), ®)
(B3
where
4]l a
a(oc)—mn+a—+g. O]
It was shown in [1, 2, 4] that the function g(a), according to (9), has a (unique) minimum under the
condition

B3

4l <3Tz1.30. (10)

Je

From the condition €'(ct) = 0, we obtain the equation for a (cf. [2, 4])
~ 2/3

4g
As shown in [2], in this case €"(a) >0, i.e. (11) corresponds to the minimum of the function (o) .
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According to relations (8) and (9), a relative error estimate ||Ay, ||/|| v|l of regularized solution y,
depends on A and 1 (more exactly, on the product || A || ). Therefore, if we solve a few examples (e.g., a few

spectra are being processed) with the same 4 and n (spread function and noise), then their error estimates (9)
will be identical and nonoverstated (in function of o). It follows that when solving some original example P (i.e.

when processing f;,) with unknown solution (spectrum) y,, one can use the results of solving other (model,
training) example O with known (given) exact solution (spectrum) y, , with the same A and 1 as in example P.
Furthermore, when solving example O, one can calculate the function (), =[[ Ay, || / | ¥, Il and, based on

this function, find o, , (optimal value of a, at whicho ,(a), =min). This value @, , can be used for
a

solving the original example (spectrum) P.
Estimate of parameter g. Furthermore, it is necessary to determine the parameter g, which comes into
(9). An estimate of g can be obtained graphically, namely, by fitting such value of g, at which envelope &(a)

contacts curve (or a set of curves) c,,(a), . The value of a corresponding to the contact point we denote as o, .

Determining g can also be performed analytically. Equating o (o) ande(a), as well as taking into

rel

account the condition €'(ct) = 0, we obtain two equations for two unknowns o and g:

y
141, _a

o Targ O (12)
a=F(a),
where, according to (11),
- 2
Fa)=y(a+g)”, x:(%} : (13)

Here, o, (a) is the calculated upper curve from a set of curves o (a), =|[Ay,, |l / l vo Il The first
equation in (12) is the condition of contact of &(a) (according to (9)) and o, (ct) , whereas the second equation
is the minimum condition of function g(a), i.e. €'(at) =0 at the contact point. The first equation can be resolved
relatively to g:

g= w[[%(oc)——'z%"j —1} .

Then, obtained system of two equations can be solved by iterations:

~ 2/3
A n]

43
Oy =%> O =%y (OLH +gi—l) > Aia :( 4g
i1

[4]n

-1
g =a,||oy(0) -2 —1], i=1,2,3...
{ | z@j

This iterative process for o converges to some o = o, , since |F '(oc)| <1, as follows from (13).
However, since the function &, (o) is given in tabular form, it is more convenient to solve the problem

graphically displaying onto a computer monitor the curves o, (o) and g(o) at different g. To enhance the

efficiency of this method when working out a model example Q (or several examples) it is necessary to use an
additional information about the original example (spectrum) P, namely, an estimate of the number of maxima
(spectral lines) in the desired solution (spectrum)y,, ratios of their intensities, values of its abscissa

(wavelengths or frequencies), the type of kernel (SF), etc. Such information will be helpful to choose more
“successfully” the regularization parameter o and estimate the error of solving the examples (spectra) O and P.

The modeling method generates a regularizing algorithm (RA), since whenn — 0, a.=o0(n’) and finite
| ]| and g, we have for original and model examples according to (8) and (9) (cf. [2, 4]):
A
[ESATI

(B3
i.e. at zero errors of initial data, the solution y, turns into the exact solution (normal pseudosolution).

cSrel ((X,) =

B
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Remark 1. Although the method of modeling (training, learning) requires a lot of preliminary work on
drawing up and solving the model (training) examples, it is very effective in cases when it is required to solve a
significant number of “close” examples (to resolve signals for a number of times, to restore several similar spec-
tra in the inverse spectroscopy problem, etc.). Moreover, this method gives the possibility to explore practical
potentials of the used method and algorithm applied to a particular problem on a number of training examples (to
obtain the real solution error, the possibility of restoring the fine solution structure, etc.).

Remark 2. The objection can arise that, because of the ill-posedness of a problem, even small
differences of the model problem (example, spectrum) from the original one can lead to significant differences of
the regularization parameter o, the relative solution error || Ay, ||/|| v, etc. However, firstly, the problem is
solved by a stable regularization method and it is the conditionally well-posed (by Tikhonov), and secondly,
relations (8) and (9) show that the error estimates for solutions || Ay, || /|| v|| are the same for the original and

model examples under the condition of identity of || A Im.

An example from spectroscopy

Let us illustrate the foregoing method of modeling (training, learning) by an example from the inverse
spectroscopy problem (cf. [8]). The problem is to restore a spectrum via solving the Fredholm integral equation
of the first kind (an ill-posed problem)

Ay = j KA y(MydM = f(L),  c¢<A<d, (14)

where K(A,A") is the spread function of a spectral device, y(L) is the true (desired) spectrum, f(X) is
the measured (experimental) spectrum, A is the wavelength, [a,b] are the limits for desired spectrum, [c,d] are
the limits for measured spectrum.

We assume that, instead of exact f and K, we have f and K such that || f— f[|<8, ||A—A|<E.
Equation (14) is solved by the Tikhonov regularization method according to (2), where 4" = 4" .

At first, we consider the original example P with known measured noisy spectrum f (M) (Fig.1)on a
Ain +H50 A, where A =c¢=450 nm, A, =d =650 nm, #=Ak=const=1 nm

uniform grid A =4 Y/ -
is the discretization step, and n = (A

min > *¥min

mae = Amin)/h =200 is the number of discretization steps in A.

It is assumed that the spread function (SF) K = K(A,\") of spectral device has a variable width, i.e. it is
nondifference. As it is known [8, 19], the SF width w(L) at level of 0.5 is proportional to wavelength A.
Therefore, we assumew(L)=gA, where ¢ =0.015. This corresponds touw(c)=w(450 nm)=26.75nm,
w(485 nm) =7.275 nm, w(620 nm)=9.3 nm, and w(d)=w(650 nm)=9.75 nm.

We use the dispersion SF

KO\ = f"j(}“)/ m (15)
(=2 +[w?)/2]
It is shown in [8] that SF of this type gives one of the most accurate restorations of a spectrum. To
characterize the SF, along with the width w(L) at a level of 0.5, one may also use the integral SF width W (1)
(the ratio of the SF area to its height)

W) = j KO dN /K(m) .

For a dispersion SF, we have: W (L) = (1/2) w(h) ~1.571w(}r).

Figure 1 shows the SF K(A,A") (17) at A =485 and 620 nm.

Analysis of Fig. 1 shows that the true (unknown) spectrum has, most likely, two close lines in the vicinity
of A ~ 525 nm and near A = 620 nm, but they are poorly resolved in the measured spectrum f(A) . Moreover,
there is an indication that there is one weak line at A ~ 507 nm, as well as at A ~ 543 nm in true spectrum
y(A). Thus, everything indicates that there are at least nine spectral lines in the spectrum y(X), although the
number of lines in the measured spectrum f'(A) is fewer (6 or 7).

In connection with this, the second (model, training) example Q “close” to the original P was modeled.
The true spectrum of example Q contains 9 as well as § and 10 spectral lines in the form of Gaussian (cf. [3, 8]),
i.e. several examples Q were modeled.
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Fig. 1. Example P. 1 — exact spectrum f(A) ; 2 — noisy spectrum f(?x.) and two cross-sections of SF:
3-10K(485,A") and 4 — 10 K(620,1") (conventional units)

The measured spectra f,,(A) in examples O were numerically calculated by formula
b
Jo(h)= JK(X,X')yQ(X') d\, c<x<d.

Furthermore, a =460 nm, b =640 nm.

The measurement errors 8 of the spectrum f,(A) were estimated at about 1%, which corresponds to the
standard deviation (SD) ~ 0.02. Therefore, the values of f,(A) were noisy by random errors with SD from 0.01
to 0.04, which corresponds to 6, = 0.5—-2% (because the value 5, is known inexactly). The SF in example Q
was taken in the form (15), moreover (since the SD is also known inexactly), w(A) was taken to be
w(h)=q 1+, where { e[-0.02,0.04], which corresponds to &, = 0-4%.

Further, the “close” model examples Q were solved by the quadrature method with Tikhonov

regularization via solving equation (2) at SF (15) for several values of the regularization parameter a. The
dependence of the relative error of regularized solutions y, () =y,,(A) was calculated with respect to exact

solutions y(A) = y, (A):
1y, )=y |l
Iyl
Figure 2 shows dependences o, (o), for series of “close” model examples and for several values of

errors 8, =38/|| f|| and & =&/|| 4| (the region between the curves 1 and 2). Note that the curve 3 in the

modeling method is supposed to be unknown; it is given for illustration only.
2 —

\ voT T T
A )
\ \
1.8 : \

cTrel ((X,) =

1 \
£ 160 | >
£ 160 o !
g 1.4 : N
\ AN
= 1.2 %3 3 b J
g \7 Yo e &0
o e m———
5 ! N
S gl XN V. |
2 \\ eo) S KA
< O 6 kN / S ML 7
° : Mo / s /’V\ s
~ 0.4 N, s LN g <
: N \ N f,/ s 7, Y —
0al \ ~ N By /5//
e S
1 i il g

§ 7 6 5 4 3 2 -1 0 1 lga

Fig. 2. Relative errors o, (o) for examples Q (1 and 2 — the boundaries above and below,

3- o, (a),)and envelope curves g(a) for several values of parameter g (non-dimensional)
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Figure 2 shows also several envelopes &(a) according to (9) at | A|=| 4]=0.843 and
n=3_+&, =210 for several values g from 0 to 0.1. We choose such value g at which the condition (10) is
satisfied and one of the curves g(a) contacts the set of curves (a) , namely, g =0.045 . This corresponds to
regularization parametero = o, = 107%. It is seen from Fig. 2 that, despite the scatter of curves o, (c) and
g(a) , the value of g and, as a consequence, o, are estimated reliably.

Figure 3 shows solution (restored spectrum) at o, = 1072, o, (a,)=0.073=7.3% . We can see that the

spectrum is restored accurately: close lines are resolved and weak lines are separated.

9 T T
1

N -
Vi U

y ry .
/ i p
\ i \ );

ARV
i3
y
O RE el o RS N - g N
1

‘ i &L L
460 480 500 520 540 560 580 600 620 640
A, A, nm

Spectra and SF, conv. units

S = N W A U N O
T

Fig. 3. Example P. 1 — true spectrum y,(X); 2 — measured spectrum f,(); 3 — restored spectrum y_,(\)
at o.=a, =107 and two cross-sections of SF: 4 — 10 K(485,)") and 5 — 10K (620,1") (conventional units)

Remark 3. Although we assume in the modeling method that the exact spectrum (solution) y(A) is
unknown in original example P, we adduce the exact spectrum y,(A) (Fig. 3) to demonstrate the potential

possibilities of a technique. However, the spectrum y, (1) is not used for choosing o, .

Conclusion

There are a number of ways for choosing the regularization parameter o and estimating error || Ay, || for
regularized solution y, . We should note the discrepancy principle [18], the generalized discrepancy principle [9],
the modified discrepancy principle (the Raus—Gfrerer rule) [20], the cross-validation method [21], the L-curve
criterion [22], the local regularizing algorithm [23], the new criterion of a posteriori choosing [15], the adaptive
specialized generalized discrepancy principle [13], the new version of a posteriori choosing [16, 17], etc.

The errors 6 and & (as well as sourcewise representability of the solution) are usually used in these
methods as the additional information about the solution. As a result, the regularization parameter o at finite &
and & is chosen reliably (but with some overstatement in comparison with ., ). Furthermore, the solution error
|| Ay, || is obtained mainly in the form of asymptotic estimates, and the estimate || Ay, || at finite 8 and & is
usually obtained with a large overstatement (see. Fig. 2, the curve g =0).

We have developed a method of model (training, learning) examples, that gives the possibility to choose o
and, most importantly, to obtain nonoverstated error estimate || Ay, || (see Fig. 2, the contact of curves o, (o)
and g(a) ata=a,, as well as Fig. 3, the curve y,, () ). The method of modeling or training has been applied
to solving the inverse spectroscopy problem (restoration of a fine spectrum structure by solving an integral
equation with the use of an experimental spectrum and the spread function of a spectral device). The method has
enabled to resolve close lines and to select weak lines. The proposed technique can be used for restoration of

smoothed and noisy spectra, i.e. for enhancement of the resolving power of spectral devices by mathematical and
computer processing of experimental spectra.
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