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Abstract 
Subject of Study. The paper deals with further development of the method of computational experiments for solving ill-
posed problems, e.g., the inverse spectroscopy problem. This method produces an effective (nonoverstated) estimate for 
solution error of the first-kind equation. Method of Research.  An equation is solved by the Tikhonov regularization method. 
We have obtained nonoverstated estimate for solution error and a new principle for choosing the regularization parameter on 
the basis of the truncating singular number spectrum of an operator. It is proposed to estimate the truncation magnitude by 
results of solving model (training, learning) examples close to an initial example (problem). This method takes into account 
an additional information about the solution. Main Results. We have derived a new, more accurate estimate for regularized 
solution error using the truncation parameter g. Ways for determining g according to the results of solving model examples 
are proposed. The method of modeling or training is applied to solving the inverse spectroscopy problem (restoration of a 
fine spectrum structure by solving integral equation on the basis of an experimental spectrum and the spread function of a 
spectral device). The method makes it possible to resolve close lines and select weak lines. Practical Relevance. The 
proposed method can be used to restore smoothed and noisy spectra, in other words, to enhance the resolution of spectral 
devices by mathematical and computer processing of experimental spectra. 
 

Keywords 
ill-posed problems, Tikhonov regularization, solution error, method of training examples, inverse problem of spectroscopy, 
integral equation, spread function of spectral device, measured spectrum, training spectra, restored spectrum. 
 

Acknowledgements  
This work was supported by the Russian Foundation for Basic Research (RFBR), grant №13-08-00442.  
 

СПОСОБ ОБУЧАЮЩИХ ПРИМЕРОВ В РЕШЕНИИ  
ОБРАТНЫХ НЕКОРРЕКТНЫХ ЗАДАЧ СПЕКТРОСКОПИИ 

В.С. Сизиковa, А.В. Степановb 
 

a Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация 
b Крымский федеральный университет им. В.И. Вернадского, Симферополь, 95342, Российская Федерация 
Адрес для переписки: sizikov2000@mail.ru 
 

Информация о статье 
Поступила в редакцию 20.09.15,  принята к печати 12.10.15 
doi:10.17586/2226-1494-2015-15-6-1147-1154 
Язык статьи – английский 
 

Ссылка для цитирования: Сизиков В.С., Степанов А.В. Cпособ обучающих примеров в решении обратных некорректных задач 
спектроскопии // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 6. С. 1147–1154. 
 

Аннотация 
Предмет исследования. Дано дальнейшее развитие способа вычислительных экспериментов решения некорректных 
задач, например, обратной задачи спектроскопии. Этот способ позволяет  получить эффективную (незавышенную) 
оценку погрешности решения уравнения первого рода. Метод. Уравнение решается методом регуляризации 
Тихонова. Получены незавышенная оценка погрешности решения и новый способ выбора параметра регуляризации 
на основе использования усечения спектра сингулярных чисел оператора. Величину усечения предлагается 
оценивать по результатам решения модельных или обучающих примеров, «близких» исходному примеру (задаче). 
Данный способ учитывает дополнительную информацию о решении. Основной результат. Выведена новая, более 
точная оценка погрешности регуляризованного решения с использованием параметра усечения g. Предложены 
способы определения g по результатам решения модельных примеров. Способ моделирования или обучения 
применен к решению обратной задачи спектроскопии (восстановлению тонкой структуры спектра путем решения 
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интегрального уравнения на основе экспериментального спектра и аппаратной функции спектрального прибора). 
Способ позволил разрешить близкие линии и выделить слабые линии. Практическая значимость. Предложенная 
методика может быть использована для восстановления заглаженных и зашумленных спектров, другими словами, 
для повышения разрешающей способности спектральных приборов путем математической и компьютерной 
обработки экспериментальных спектров. 
 

Ключевые слова: некорректные задачи, метод регуляризации Тихонова, погрешность решения, способ обучающих 
примеров, обратная задача спектроскопии, интегральное уравнение, аппаратная функция спектрального прибора, 
измеренный спектр, обучающие спектры, восстановленный спектр. 
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Introduction 
 

As is well known [1–4], it is practically impossible to obtain an effective (nonoverstated) error estimate 
for solution of ill-posed problem, e.g., the inverse spectroscopy problem without an additional (a priori) 
information about the solution. In this paper, we develop an adaptive method of computational experiments for 
estimating the solution error and choosing the regularization parameter  in solving ill-posed problems by the 
Tikhonov regularization method. The method is also known as: the technique of model, standard, learning, 
training examples, the way of the pseudoinverse operator [1–8]. This method takes into account an additional (a 
priori) information about the desired solution (an estimate of the number of maxima, their abscissas and 
ordinates, etc.) and, in this respect, resembles the methods such as the Tikhonov -regularization with 
constraints on the solution [9], solution on a compact [4, 9], the methods of descriptive regularization [10], also 
taking into account a priori information on the solution (nonnegativity, monotonicity, convexity, parameters of 
extrema, etc.). However, the specific implementation of the method of computational experiments differs from 
these methods.  

This method has been earlier developed and applied to signal processing [1–3], image restoration [5, 6] 
and spectroscopy [5–8]. In this paper, we propose its modification and application to the inverse problem of 
spectroscopy. 
 

Basic relations  
 

Consider an operator equation of the first kind  
 , , ,Ay f y Y f F     (1) 

where y is desired, and f is given elements of Hilbert spaces Y and F; A is a linear bounded operator from Y into 
F. The operator A is not expected to be continuously invertible, i.e. the problem of solving equation (1) is ill-
posed. However, for the exact f we assume that equation (1) is solvable.  

The problem is to find an element y Y  with minimal norm, which supplies the minimum value for the 

discrepancy || ||FAy f  and which is the pseudosolution, in particular, the normal solution [4, 9, 11].  

In the zero-order Tikhonov regularization method [4, 9, 11, 12], giving one of the most effective ways for 
obtaining pseudosolutions, instead of (1) the equation 

 *( )E B y A f    ,  (2) 

is solved, where  

 A A A   ,   f f f   ,   y y y    ,  (3) 

moreover, A,  f  and y are the exact operator and elements; A , f  and y  are their practical values; A , f  and 

y  are their errors; 0   is the regularization parameter; *B A A   ; E is the unit operator. 

Estimate of solution error. Consider the question of estimating the error y  of the regularized solution 

y  and choosing the regularization parameter . 

It is known [13] that it is almost impossible to obtain an effective (nonoverstated) estimate of the error 
y  without using additional (a priori) information on the solution. In this paper, we propose to use the results 

of solving “close” model (learning) examples as additional information. Taking into account the ratio 
* *A Ay A f  , which follows from (1), as well as the ratios (2) and (3), we obtain  

 * *( ) ( )E B y E A A y A f            

or 

 1 * 1( ) ( ) ( )y E B A f A y E B y 
          , 

from where we find the following estimates in the norm of absolute and relative errors of the regularized solution 

 1 * 1|| || || ( ) || (|| || || || || ||) || ( ) || || ||y E B A f A y E B y 
               , 
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 1 * 1|| || || ||
|| ( ) || || || || ( ) ||

|| || || ||

y f
E B A A E B

y y
   

         
 

  .  (4) 

Taking into account that || || || || || ||A y f   or 1 || || || || || ||y A f , we obtain the estimate (4) for the relative 

error of the regularized solution in the form 

 1 * 1
rel rel rel

|| ||
( ) || ( ) || || || (δ ξ ) || ( ) ||

|| ||

y
E B A A E B

y
 

             ,  (5) 

where   

 rel

|| ||
δ

|| ||

f

f


 ,     rel

|| ||
ξ

|| ||

A

A


   

are the relative errors of the right-hand side  f  and operator A. The right-hand side of (5) is the upper envelope of 
the true relative error rel ( )  . The first summand in the right-hand side of (5) is due to the errors of data, while 

the second summand is determined by regularization. In (5), we have (cf. [14–17]): 1 *|| ( ) || 1 (2 )E B A    , 

and norm 1|| ( ) ||E B     can be expressed through minimum singular number μ of symmetric positively 

determined operator E B   :  

 1
min min|| ( ) || 1 ( ) 1 ( ( ))E B E B B           .  

We obtain (cf. [14–17]):  

 rel

min

|| || || ||
σ ( ) η

|| || ( )2

y A

y B
 

   
 


 ,  (6) 

where rel relη δ ξ  .  

However, in practice, estimate (6) (as well as (5)) may give a significant overstatement for rel ( )  , 

since, in case of ill-conditioned and ill-posed problems, minμ ( )B  is close or equal to zero and then (when 

minμ ( ) 0B  ) 

 rel

|| || || ||
( ) η 1

|| || 2

y A

y


    



.  (7) 

The estimate (7) is not only overstated, but not having the minimum with respect to .  
To obtain more effective estimate of rel ( )   we use the concept of the pseudoinverse operator having 

enclosed in it, however, a sense somewhat different from the pseudo-inverse Moore–Penrose matrix A  which 

gives the solution y A f  [4, 12, 18] and from the regularized operator 1 *( )E B A    which gives the solution 
1 *( )y E B A f

     . The point is that A  corresponds to the case 0 , minμ ( ) 0B  , while regularization is 

dealing with a finite value of 0   and minμ ( ) 0B  , which leads to an overstatement of rel ( )   in both cases. 

In order to bring the estimate rel ( )   nearer to the true estimate of rel ( )  , we truncate the spectrum of 

the operator (matrix in the discrete case) B  from below, namely, instead of minμ ( )B  we use a value minμ ( )g B   

and write (6) in the form  

 rel

|| ||
( ) ( )

|| ||

y

y


     ,  (8) 

where 
|| ||

( )
2

A

g


   

 


.  (9) 

It was shown in [1, 2, 4] that the function ( )  , according to (9), has a (unique) minimum under the 

condition 

 
|| || 3 3

1.30
4

A

g
  


. (10) 

From the condition ( ) 0   , we obtain the equation for  (cf. [2, 4]) 

  
2 3

4 3|| ||

4

A
g

g

 
    

 


.  (11)  

As shown in [2], in this case ( ) 0   , i.e. (11) corresponds to the minimum of the function ( )  .  
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According to relations (8) and (9), a relative error estimate || || || ||y y  of regularized solution y  

depends on A  and η (more exactly, on the product || ||A  ). Therefore, if we solve a few examples (e.g., a few 

spectra are being processed) with the same A  and η (spread function and noise), then their error estimates (9) 
will be identical and nonoverstated (in function of  ). It follows that when solving some original example P (i.e. 

when processing Pf
 ) with unknown solution (spectrum) Py , one can use the results of solving other (model, 

training) example Q with known (given) exact solution (spectrum) Qy , with the same A  and η as in example P. 

Furthermore, when solving example Q, one can calculate the function rel ( ) || || || ||Q Q Qy y     and, based on 

this function, find opt Q  (optimal value of  , at which rel ( ) minQ 
   ). This value opt Q  can be used for 

solving the original example (spectrum) P.  
Estimate of parameter g. Furthermore, it is necessary to determine the parameter g, which comes into 

(9). An estimate of g can be obtained graphically, namely, by fitting such value of g, at which envelope ( )   

contacts curve (or a set of curves) rel ( )Q  . The value of  corresponding to the contact point we denote as g . 

Determining g can also be performed analytically. Equating rel ( )   and ( )  , as well as taking into 

account the condition ( ) 0   , we obtain two equations for two unknowns  and g:  

 rel

|| ||
( ),

2

( ),

A

g

F


    

  
   


  (12) 

where, according to (11), 

  4 3
( )F g     ,    

2 3
|| ||

4

A

g

 
   

 


. (13) 

Here, rel ( )   is the calculated upper curve from a set of curves rel ( ) || || || ||Q Q Qy y    . The first 

equation in (12) is the condition of contact of ( )  (according to (9)) and rel ( )  , whereas the second equation 

is the minimum condition of function ( )  , i.e. ( ) 0    at the contact point. The first equation can be resolved 

relatively to g:  

 
1

rel

|| || η
( ) 1

2

A
g

  
        

   


. 

Then, obtained system of two equations can be solved by iterations:  

0   ,    4 3

1 1 1i i i ig       ,   

2 3

1
1

|| ||
,

4i
i

A

g


 
   

 


 

1

rel

|| ||
( ) 1

2
i i i

i

A
g

              


,    1, 2,3i     

This iterative process for  converges to some g   , since ( ) 1F    , as follows from (13).  

However, since the function rel ( )   is given in tabular form, it is more convenient to solve the problem 

graphically displaying onto a computer monitor the curves rel ( )   and ( )   at different g. To enhance the 

efficiency of this method when working out a model example Q (or several examples) it is necessary to use an 
additional information about the original example (spectrum) P, namely, an estimate of the number of maxima 
(spectral lines) in the desired solution (spectrum) Py , ratios of their intensities, values of its abscissa 

(wavelengths or frequencies), the type of kernel (SF), etc. Such information will be helpful to choose more 
“successfully” the regularization parameter   and estimate the error of solving the examples (spectra) Q and P.  

The modeling method generates a regularizing algorithm (RA), since when 0 , 2( )o    and finite 

|| ||A  and g, we have for original and model examples according to (8) and (9) (cf. [2, 4]): 

 rel

|| ||
( ) 0

|| ||

y

y


    ,  

i.e. at zero errors of initial data, the solution y  turns into the exact solution (normal pseudosolution).  
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Remark 1. Although the method of modeling (training, learning) requires a lot of preliminary work on 
drawing up and solving the model (training) examples, it is very effective in cases when it is required to solve a 
significant number of “close” examples (to resolve signals for a number of times, to restore several similar spec-
tra in the inverse spectroscopy problem, etc.). Moreover, this method gives the possibility to explore practical 
potentials of the used method and algorithm applied to a particular problem on a number of training examples (to 
obtain the real solution error, the possibility of restoring the fine solution structure, etc.).  

Remark 2. The objection can arise that, because of the ill-posedness of a problem, even small 
differences of the model problem (example, spectrum) from the original one can lead to significant differences of 
the regularization parameter , the relative solution error || || || ||y y , etc. However, firstly, the problem is 

solved by a stable regularization method and it is the conditionally well-posed (by Tikhonov), and secondly, 
relations (8) and (9) show that the error estimates for solutions || || || ||y y  are the same for the original and 

model examples under the condition of identity of || ||A  .  

 
An example from spectroscopy 

 
Let us illustrate the foregoing method of modeling (training, learning) by an example from the inverse 

spectroscopy problem (cf. [8]). The problem is to restore a spectrum via solving the Fredholm integral equation 
of the first kind (an ill-posed problem) 

( , ) ( ) ( ),
b

a

Ay K y d f c d            ,  (14) 

where ( , )K    is the spread function of a spectral device, ( )y   is the true (desired) spectrum, ( )f   is 

the measured (experimental) spectrum, λ is the wavelength, [ , ]a b  are the limits for desired spectrum, [ , ]c d  are 

the limits for measured spectrum.  

We assume that, instead of exact f  and K, we have f  and K  such that || ||f f   , || ||A A   . 

Equation (14) is solved by the Tikhonov regularization method according to (2), where * TA A .  

At first, we consider the original example P with known measured noisy spectrum ( )f   (Fig. 1) on a 

uniform grid min min max, , ,h      , where min 450c    nm, max 650d    nm, const 1h      nm 

is the discretization step, and max min( ) 200n h     is the number of discretization steps in λ.  

It is assumed that the spread function (SF) ( , )K K     of spectral device has a variable width, i.e. it is 

nondifference. As it is known [8, 19], the SF width ( )w  at level of 0.5 is proportional to wavelength λ. 

Therefore, we assume ( ) q  w , where 0.015q  . This corresponds to ( ) (450 nm) 6.75 nmc  w w , 

(485 nm) 7.275 nmw , (620 nm) 9.3 nmw , and ( ) (650 nm) 9.75 nmd  w w .  

We use the dispersion SF  
 

2 2

( ) 2
( , )

( ) [ ( ) 2]
K

   
   
w

w
.  (15) 

It is shown in [8] that SF of this type gives one of the most accurate restorations of a spectrum. To 
characterize the SF, along with the width ( )w  at a level of 0.5, one may also use the integral SF width ( )W   

(the ratio of the SF area to its height)  

( ) ( , ) ( , )W K d K




        .  

For a dispersion SF, we have: ( ) ( 2) ( ) 1.571 ( )W      w w .  

Figure 1 shows the SF ( , )K    (17) at 485  and 620 nm.  

Analysis of Fig. 1 shows that the true (unknown) spectrum has, most likely, two close lines in the vicinity 
of 525   nm and near 620   nm, but they are poorly resolved in the measured spectrum ( )f  . Moreover, 

there is an indication that there is one weak line at 507   nm, as well as at 543   nm in true spectrum 
( )y  . Thus, everything indicates that there are at least nine spectral lines in the spectrum ( )y  , although the 

number of lines in the measured spectrum ( )f   is fewer (6 or 7).  

In connection with this, the second (model, training) example Q “close” to the original P was modeled. 
The true spectrum of example Q contains 9 as well as 8 and 10 spectral lines in the form of Gaussian (cf. [3, 8]), 
i.e. several examples Q were modeled.  
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Fig. 1. Example P. 1 – exact spectrum ( )f  ; 2 – noisy spectrum ( )f   and  two cross-sections of SF:  

3 – 10 (485, )K   and 4 – 10 (620, )K   (conventional units) 

The measured spectra ( )Qf   in examples Q were numerically calculated by formula 

( ) ( , ) ( ) ,
b

Q Q

a

f K y d c x d          . 

Furthermore, 460 nma  , 640 nmb  .  

The measurement errors δ of the spectrum ( )Pf   were estimated at about 1%, which corresponds to the 

standard deviation (SD) 0.02 . Therefore, the values of ( )Qf   were noisy by random errors with SD from 0.01 

to 0.04, which corresponds to rel 0.5 2%    (because the value rel  is known inexactly). The SF in example Q 

was taken in the form (15), moreover (since the SD is also known inexactly), ( )w  was taken to be 

( ) (1 )q    w , where [ 0.02, 0.04]   , which corresponds to rel 0 4%   .  

Further, the “close” model examples Q were solved by the quadrature method with Tikhonov 
regularization via solving equation (2) at SF (15) for several values of the regularization parameter . The 
dependence of the relative error of regularized solutions ( ) ( )Qy y     was calculated with respect to exact 

solutions ( ) ( )Qy y   :  

rel

|| ( ) ( ) ||
( )

|| ( ) ||

y y

y
   

  


. 

Figure 2 shows dependences rel ( )Q   for series of “close” model examples and for several values of 

errors rel || ||f    and rel || ||A    (the region between the curves 1 and 2). Note that the curve 3 in the 

modeling method is supposed to be unknown; it is given for illustration only.  

 
 

Fig. 2. Relative errors rel ( )   for examples Q (1 and 2 – the boundaries above and below,  

3 – rel ( )P  ) and envelope curves ( )   for several values of parameter g (non-dimensional) 
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Figure 2 shows also several envelopes ( )   according to (9) at || || || || 0.843A A   and 
2

rel rel 2 10        for several values g from 0 to 0.1. We choose such value g at which the condition (10) is 

satisfied and one of the curves ( )   contacts the set of curves rel ( )  , namely, 0.045g  . This corresponds to 

regularization parameter 2.210g
    . It is seen from Fig. 2 that, despite the scatter of curves rel ( )   and 

( )  , the value of g and, as a consequence,  are estimated reliably. 

Figure 3 shows solution (restored spectrum) at 2.210g
  , rel ( ) 0.073 7.3%g    . We can see that the 

spectrum is restored accurately: close lines are resolved and weak lines are separated. 

 
 

Fig. 3. Example P. 1 – true spectrum ( )Py  ; 2 – measured spectrum ( )Pf  ; 3 – restored spectrum ( )Py    

at 2.210g
     and two cross-sections of SF: 4 – 10 (485, )K   and 5 – 10 (620, )K   (conventional units) 

Remark 3. Although we assume in the modeling method that the exact spectrum (solution) ( )y   is 

unknown in original example P, we adduce the exact spectrum ( )Py   (Fig. 3) to demonstrate the potential 

possibilities of a technique. However, the spectrum ( )Py   is not used for choosing g .  
 

Conclusion 
 

There are a number of ways for choosing the regularization parameter  and estimating error || ||y  for 

regularized solution y . We should note the discrepancy principle [18], the generalized discrepancy principle [9], 

the modified discrepancy principle (the Raus–Gfrerer rule) [20], the cross-validation method [21], the L-curve 
criterion [22], the local regularizing algorithm [23], the new criterion of a posteriori choosing [15], the adaptive 
specialized generalized discrepancy principle [13], the new version of a posteriori choosing [16, 17], etc.  

The errors δ and ξ (as well as sourcewise representability of the solution) are usually used in these 
methods as the additional information about the solution. As a result, the regularization parameter  at finite δ 
and ξ is chosen reliably (but with some overstatement in comparison with opt ). Furthermore, the solution error 

|| ||y  is obtained mainly in the form of asymptotic estimates, and the estimate || ||y  at finite δ and ξ is 

usually obtained with a large overstatement (see. Fig. 2, the curve 0g  ).  

We have developed a method of model (training, learning) examples, that gives the possibility to choose  
and, most importantly, to obtain nonoverstated error estimate || ||y  (see Fig. 2, the contact of curves rel ( )   

and ( )   at g   , as well as Fig. 3, the curve ( )Py  ). The method of modeling or training has been applied 

to solving the inverse spectroscopy problem (restoration of a fine spectrum structure by solving an integral 
equation with the use of an experimental spectrum and the spread function of a spectral device). The method has 
enabled to resolve close lines and to select weak lines. The proposed technique can be used for restoration of 
smoothed and noisy spectra, i.e. for enhancement of the resolving power of spectral devices by mathematical and 
computer processing of experimental spectra.  
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