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Abstract

Complex huge-scale scientific applications are simplified by workflow to execute in the cloud environment. The cloud
is an emerging concept that effectively executes workflows, but it has a range of issues that must be addressed for it to
progress. Workflow scheduling using a nature-inspired metaheuristic algorithm is a recent central theme in the cloud
computing paradigm. It is an NP-complete problem that fascinates researchers to explore the optimum solution using
swarm intelligence. This is a wide area where researchers work for a long time to find an optimum solution but due to
the lack of actual research direction, their objectives become faint. Our systematic and extensive analysis of scheduling
approaches involves recently high-cited metaheuristic algorithms like Genetic Algorithms (GA), Whale Search Algorithm
(WSA), Ant Colony Optimization (ACO), Bat Algorithm, Artificial Bee Colony (ABC), Cuckoo Algorithm, Firefly
Algorithm and Particle Swarm Optimization (PSO). Based on various parameters, we do not only classify them but also
furnish a comprehensive striking comparison among them with the hope that our efforts will assist recent researchers
to select an appropriate technique for further undiscovered issues. We also draw the attention of present researchers
towards some open issues to dig out unexplored areas like energy consumption, reliability and security for considering
them as future research work.
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AHHOTaNMA

TIpyMeHeHHe CIIOKHBIX KPYITHOMACIITAOHBIX HAYYHBIX MPUJIOKEHHIT YIPOIIAETCs B Cllydae uX 00paboTKH B 001a4HOM
cpene. JlanpHeiimee pa3BuTHe 00JaYHBIX TEXHOJIOTUH CBA3aHO C PEUICHHEM psila HOBBIX IpobneM. LleHTpanbHoi
TEMOH TapajurMbl OONAa4YHBIX BBIYUCICHUI SABISETCS IUIAHUPOBaHHE PabOYMX MPOLECCOB C HCIOJIb30BAHUEM
OMOMHCIIUPUPOBAHHBIX META’BPUCTHUYCCKUX anroputMoB. NP-monuas 3agaya (NP-completeness) npusiekaeT
HCCIIeIoBaTelel K MONUCKY ONTUMAIEHOTO PENIeH s ¢ HCIIOIb30BaHIEM POEBOr0O HHTEIUIeKTa. B pabore mpencraBieHs!
CHCTEMaTH3UPOBAHHBIH aHAN3 ¥ OIIEHKAa METa’BPUCTHYECKUX aJITOPUTMOB, TAaKUX Kak reHernueckuil (Genetic
Algorithms, GA), kurossrii (Whale Search Algorithm, WSA), mypaseunslii (Ant Colony Optimization, ACO), netyunx
mbieii (Bat Algorithm, BA), muenunsiii (Artificial Bee Colony, ABC), kykyuikun nouck (Cuckoo Algorithm, CA),
cBemtukoBbii (Firefly Algorithm, FA), ontumusarms poem vactui (Particle Swarm Optimization, PSO). IIpeacraBneHbt
IIapaMeTphl aJITOPUTMOB, JaHA X KJIACCH(UKALNS, TIPUBECHO MOIPOOHOE CpaBHEHUE. YIIEIICHO BHUIMAHNE HEPELLICHHBIM
npobieMaM, TAKUM Kak IOTpeOIeHHE SHEPTUH, HaJIe)KHOCTh 1 0€30I1aCHOCT. [Ipe/icTaBICHHBIC PEe3yIbTaThl HO3BOJIAT
HCCIIeJOBATEIISIM BBIOPATH MOAXO/IINE PELICHNS BOSMOXKHBIX HOBBIX IIPOOIEM B OOIAYHBIX BEIYUCICHHUSX.
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Introduction

In the last few years, the distributed computing
paradigm has become a buzzword due to its robust features
like reliability, elasticity, scalability, and sharing ability.
Due to the pay-as-you-go (PAYG) and dynamic scalable
nature Cloud Computing is an emerging technology of
the distributed computing paradigm [1]. Scheduling is a
process used to allocate resources among a set of tasks in
a distributed environment in order to achieve Quality of
Service (QoS) within a time frame, otherwise end-users
will be hesitant to pay the service provider, despite the
service provider’s promises to users via Service Level
Agreement (SLA) [2, 3]. Optimum resource scheduling
is one of the central themes in the cloud, which is NP-
complete. We have not had such an algorithm till now
that generates an optimal solution within the polynomial
time for the NP-complete problem [4]. Due to the local
optimum nature of the heuristic approach, researchers are
moving towards meta-heuristic techniques. The global
optimum result can be achieved by the nature-inspired
algorithm which is meta-heuristic in flavor. Nature-inspired
algorithms may be biotic and abiotic phenomena. The bio-
inspired algorithm is biotic, whereas the algorithm based
on physical and chemical properties is abiotic. Bio-inspired
algorithms are mostly based on the behavior of plants and
animals, like flower pollination algorithm, Strawberry Plant
Algorithm, Dolphin echolocation algorithm, etc. but not all.
Some bio-inspired algorithms are not dependent upon the
behavior of animals, like queen-bee evolution etc. Mostly
bio-inspired algorithms are swarm-intelligence based
like ant colony optimization etc. Physical and chemical
Properties-based algorithms are black hole algorithm etc.
An overview of nature-inspired metaheuristic algorithms is
illustrated by (Fig. 1).

Scheduling strategies are classified as optimal or sub-
optimal [5]. To achieve an optimal solution to the NP-
complete problem is very expensive, so it is better to find
an approximate solution, i.e. sub-optimal. This is the reason
why researchers focus on resolving such problems through
metaheuristic techniques. Heuristic techniques are problem-
specific and thus they cover small domain areas. Because
of their problem independence, metaheuristic techniques
attract researchers. Nowadays researchers attempt to solve
such problems using a hybrid technique that combines
heuristic and metaheuristic techniques.

Following a review of the literature, an extract of a
comparative analysis on optimization techniques is shown
in (Table 1).

The Metaheuristic Algorithm is defined by literature
[6] as “an iterative master process that guides and modifies
the operations of subordinate heuristics to efficiently
produce high-quality solutions. It may manipulate a
complete (or incomplete) single solution or a collection
of solutions per iteration. The subordinate heuristics
may be high (or low) level procedures, or a simple local
search, or just a construction method”. The authors [7]
define a metaheuristic algorithm as “an iterative generation
process that guides a subordinate heuristic by intelligently
combining different concepts for exploring and exploiting
the search space, learning strategies are used to structure
information in order to find efficiently near-optimal-
solutions”.

Literature Review

We have studied various scheduling approaches based
on metaheuristic algorithms like Artificial Bee Colony
(ABC), Whale Search Algorithm (WSA), Bat Algorithm,
Cuckoo Algorithm, Firefly Algorithm, Genetic Algorithm

Nature-Inspired Metaheuristic Algorithms

Bio-Inspired

Behavior-Dependent

Plant Based
Flower Pollination,
Strawberry Plant
Algorithm etc.

Animal Based
ACO, PSO, ABC,
BAT, Firefly etc.

Independent

Abiotic-Inspired
Behavior Black Hole Algorithm,
Harmony Search,
Water Cycle
Algorithm etc.

Genetic
Algorithm,
Queen- Bee

Evolution etc.

Fig. 1. Representation of Nature-Inspired Metaheuristic Algorithms
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Table 1. Comparative Study of Optimization Techniques

Heuristic Algorithm

Metaheuristic Algorithm

Hybrid Algorithm

Problem dependent Problem independent

Mix mode

Cover specific area of problem

Cover large area due to independent nature

Cover huge area of problem

Rule-based solution

Framework based solution

Mix mode

Processing time — low Processing time — high

Processing time — medium

Function nature — white-box

Function nature — black-box

Function nature — mix mod

Domain area — small Domain area — large

Domain area — very large

(GA), Particles Search Optimization (PSO), and Ant
Colony Optimization (ACO). The summary of all these is
represented in (Fig. 2).

The authors improved the particle swarm optimization
to schedule the workflow. They began by using a nonlinear
reducing method of inertia weight to manage the global
and local performance of particles; followed by a perfect
scheduling plan to achieve the shortest possible time and
cost, but they ignored the dynamic feature of the cloud
computing environment [8]. A multi-objective algorithm
to schedule workflow is presented by authors based on the
PSO approach. To achieve their goals, they include two
parameters, makespan and resource utilization, as well as a
rigorous encoding scheme, in their novel algorithm.

Although their experimental result illustrates that their
approach is more robust than the baseline approaches,
they ignore the balancing of VMs [9]. The authors
of [10] included a simulated annealing algorithm with
PSO to escape sinking into local optima and enhance the
convergence speed of the algorithm. Their main goal was
to reduce the execution time of tasks as well as efficiently
utilize the cloud’s resources, but they did not focus on
dynamic scheduling of workflow and security concepts.

In the paper [11], the authors tried to reduce the
execution time and cost of the workflow by applying
the two ant colonies approach and focused on executing
maximum tasks parallel in ACO. To achieve the global
optimum objective, they designed a new technique to
update the pheromone. A complementary heuristic strategy
(CHS) and an elite study strategy (ESS) are applied to
achieve multiple objectives of the algorithm. Allocation
of underutilized virtual machines by Pareto distribution
is applied by authors [12] to minimize execution cost and
execution time in ACO. They also adopt the approach
of minimum migration of virtual machines to boost

the performance of their approach in the assessment of
execution time and cost of workflow, but their practical
approach is based on a very small size of the workflow, so
the performance of the algorithm is not reliable.

The authors of [13] used the ACO technique to
minimize the makespan by grouping the ordered tasks, but
they did not consider cost, security, or load balance.

The paper [14] introduced a hybrid approach to schedule
workflow by applying Artificial Bee Colony (ABC) with
PSO. Their approach showed better results due to exploring
the wider area of a solution space. The study [15], proposes
an Artificial Bee Colony (ABC) based algorithm, in which
the authors emphasize on the quality of service policies
and crucial security concepts. To minimize the execution
cost, execution time, migration of task, and load-balance of
VMs, a hive table is maintained in a data center. Only the
ABC approach is not enough to handle all these parameters,
so they had to develop a hybrid technique.

The authors make an attempt to schedule the workflow
using the firefly algorithm (FA), taking into account
reliability, makespan, and resource utilization while
maintaining a balanced load among various virtual
machines. To select the proper virtual machine, they
applied a rule-based strategy. They did not focus on booting
time and termination delay of VMs, which impacted their
algorithm’s objective [16]. This dimness is removed in [17],
where authors proposed a cost-effective approach using the
firefly algorithm (FA) to schedule the scientific workflow
under deadline constraint while considering performance
variation of CPU as well as termination delay. To design
the humpback whale optimization algorithm, intelligent
techniques should be applied to enhance the performance.

By applying the Cuckoo Optimization Algorithm (COA)
with a harmony search approach, the authors improved the
scheduling performance in a cloud environment [ 18] where

[Metaheuristic Algorithm]

v ¥ v
(— ABC ACO BAT CUCKOO
| [14, 15] ][ [11-13] ][ [23-25] ][ [18, 19]

I

v 2 2 v
FIREFLY GA PSO WHALE
[16, 17] ][ [28-52] ][ [8-10] ][ [20-22] ]

v

v 1
(" Cost & Makespan Deadline Aware Load-Balance Aware Security Aware Energy Aware
Aware [28, 30, 36, 39, 40, [29, 31, 32, 35, 37, [34, 39] [34, 36, 37, 49, 52]
\_ [38,41] 42-44] 45-48, 50, 51]

Fig. 2. Prominent Meraheuristic Algorithm
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they included cost, energy consumption, penalty factors
and utilization of memory but they did not concern about
load balance among the processors, which is improved in
the work [19].

Vocalization of humpback whale optimization algorithm
[20] is proposed to minimize the execution cost and time.
This approach minimizes energy consumption to protect
the environment. The authors presented a multi-objective
deadline constraint-based workflow scheduling algorithm
based on whale social behavior, in which they attempted
to minimize makespan by considering load balance among
virtual machines, but they failed to consider the dynamic
nature of cloud computing, which plays an important role
in the scheduling process [21]. This is solved in [22],
where authors considered the dynamic behavior of cloud
in their grouping whale’s optimization algorithm. The first
population is arranged in ascending order, then it is divided
into several groups and a member is selected randomly
from each group to encircle the prey section to minimize
the time of response as well as execution and enhance the
throughput in a cloud computing environment.

An algorithm based on the BAT optimization strategy
to schedule the workflow was proposed to optimize time

and reliability in the cloud [23]. The authors applied the
greedy approach to minimize the cost and execution time
by improving the reliability under budget constraint, but
there is no awareness about the energy consumption etc. To
remove this weakness, the authors [24] gave more emphasis
on energy consumption in their approach, although they
included execution time and throughput but they did not
consider communication time, which is an important
factor in minimize the execution time and enhancing the
throughput. Load balance among various VMs was also
not considered by them. The work [25] proposes to use
the Bat algorithm to balance the load on the various VMs,
where authors tried to improve the resource allocation for
VMs.

The papers [26, 27] provide meticulous information
regarding metaheuristic algorithms. After reviewing
various genetic algorithms [28-52], we present our deep
investigation in brief (Tables 2, 3 and 4) and a comparative
analysis on some metaheuristic algorithms are depicted in
(Table 5).

We have analyzed various articles [53-57] and can
conclude that in a cloud environment there are various
issues required to be resolved.

Table 2. Study of Various Genetic Algorithms in Reverse Chronological Order

Publication L Nature of Input Experimental
Reference Year Objective Resource Type (Independent Workflow Type Environment
Task/Workflow)
[28] 2020 Multi-Objective Heterogeneous Workflow Scientific CloudSim, JAVA
[29] 2020 Single-Objective | Heterogeneous Independent — CloudSim
[30] 2020 Multi-Objective Homogeneous Workflow Scientific WorkflowSim
[31] 2020 Multi-Objective Heterogeneous Workflow Scientific CloudSim
[32] 2019 Multi-Objective Heterogeneous Independent — CloudSim
[33] 2019 Multi-Objective Heterogeneous Workflow Scientific jMetal Tool
[34] 2019 Multi-Objective Heterogeneous Workflow Scientific WorkflowSim
[35] 2019 Single-Objective | Homogeneous Workflow Scientific C++
[36] 2018 Multi-Objective Heterogeneous Workflow & Independent | Simple JAVA
[37] 2018 Single-Objective | Heterogeneous Independent — MATLAB
[38] 2018 Single-Objective | Heterogeneous Independent — CloudSim
[39] 2018 Single-Objective | Heterogeneous Workflow Scientific CloudSim
[40] 2017 Single-Objective | Heterogeneous Workflow Scientific WorkflowSim
[41] 2017 Multi-Objective Heterogeneous Workflow Scientific MATLAB
[42] 2016 Single-Objective | Heterogeneous Workflow Scientific CloudSim
[43] 2016 Single-Objective | Heterogeneous Workflow Scientific WorkflowSim
[44] 2015 Single-Objective | Heterogeneous Workflow Simple No Mention
[45] 2014 Single-Objective | Heterogeneous Workflow Simple C# Language
[46] 2014 Single-Objective | Heterogeneous Workflow Simple In Real Cloud
[47] 2014 Single-Objective | Heterogeneous Independent — MATLAB
[48] 2013 Single-Objective | Homogeneous Independent — CloudAnalyst
[49] 2012 Multi-Objective Homogeneous Independent — CloudSim
[50] 2012 Single-Objective | Heterogeneous Workflow Scientific No Mention
[51] 2011 Single-Objective | Homogeneous Workflow Simple CloudSim
[52] 2011 Multi-Objective Homogenous Independent — No Mention
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Table 4. Matrix Considered to Schedule Workflow using GA
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An extract from a comparative analysis on some
metaheuristic algorithms is illustrated in (Table 5).

There are several available survey articles on
metaheuristic algorithms, however in this study, we
comprehensively covered the most recent metaheuristic
techniques and focused on their pros and cons. In fact,

the current scenario necessitates the security of sensitive
data/tasks and awareness of energy consumption. As per
our survey, the major security components of the cloud
include authentication services, integrity services, and
confidentiality services. As there has been a little bit of
research in these areas we have attempted to draw the

Table 5. Strength and Limitation of GA, PSO and ACO

Algorithm Strength Limitation

GA Other techniques can be combined easily. Encoding scheme is complex.
Search space can be explored in various directions simultaneously. Convergence rate is low.
Manipulation of various parameters can be done at the same time. Crossover and Mutation rates depend
An efficient global optimum solution can be achieved for various problems. on stability.
Able to resolve complex optimization problem of various types.

PSO Low level of dependency during initial point. Convergence rate is very low.
There are few parameters to adjust. Trapping into local optima.
Performs good global search. Capacity of local search is weak.

ACO Graph based complex problem can be solve easily. Theoretical analysis is very complex.
Able to solve problem related to the dynamic nature. Initialization of parameters is based on

trial and errors.
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attention of current researchers to it. Our observations,
which are based on this survey, focus on a variety of
technical issues and will guide present researchers in their
decision for selection of an appropriate metaheuristic
technique and lighting the path of research.

Observations and Discussion

Our observation based on the above described surveys
is as follows:

Using local search approaches to build the initial
population can increase the quality of resolutions obtained
by metaheuristic algorithms which are based on the
population. The elite solutions, which are derived from
previous generations’ greatest answers, can also be utilized
to populate future generations’ beginning populations. If
these elites are strengthened before becoming a part of the
following generation, they can produce better results than
the initial elites.

Combining a metaheuristic algorithm with another
metaheuristic algorithm which is based on population or
a local search-based metaheuristic method, can improve
solution quality or convergence speed.

The transition operators employed in metaheuristic
algorithms have been modified by researchers. It is
beneficial to improve the consistency of the solution by
changing the transfer operator.

Virtual Machine placement optimization, Virtual
Machine consolidation, and Dynamic Voltage and
Frequency Scaling strategies are commonly used for energy
conservation. The most significant disadvantage of this
method is that frequency and voltage can only be altered
to a limited extent.

Service providers should agree to a dual Service Level
Agreement with the consumer, with the second SLA
being optional and selected only when the cloud customer
requires the “Green mode”. The term “green mode” refers
to a mode in which the primary purpose is to save energy
at the expense of production.

The majority of energy-aware scheduling research has
used metaheuristic strategies with the goal of lowering
energy consumption. Computation resources produce a lot
of heat, which makes execution more error-prone and, as a
result, can reduce machine efficiency and shorten computer
life spans.

In order to solve large-scale combinatorial and
multimodal problems, exact optimization algorithms
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