УДК 621.4.084

П. В. Васильев, А. В. Мелешко, В. В. Пятков

ПОВЫШЕНИЕ ТОЧНОСТИ КОРРЕКТИРУЕМОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ

Предложена модель динамики расширенного вектора состояния комплексной системы в составе бесплатформенной инерциальной навигационной и неавтономной радионавигационной систем. Представлен алгоритм оценивания непосредственно не наблюдаемых погрешностей акселерометров и гироскопов с целью коррекции их показаний в процессе дальнейшей автономной работы инерциальной навигационной системы.

Ключевые слова: инерциальная навигация, акселерометр, гироскоп, уравнение ошибок, коррекция, комплексная система.

Одним из основных источников информации для систем управления летательных аппаратов (ЛА) ограниченного радиуса действия являются бесплатформенные инерциальные навигационные системы (БИНС), применяемые в ракетно-космической технике [1]. К точности выведения таких ЛА с бортовой телевизионной или радиотехнической системой в заданную область инерциального пространства предъявляются повышенные требования. Вследствие ограничений, накладываемых на систему захвата следящих телевизионных и радиотехнических систем.

Для повышения точности определения местоположения ЛА показания БИНС корректируют по данным внешней неавтономной радионавигационной системы (НРНС) [1, 2].

Настоящая работа посвящена разработке алгоритма, обеспечивающего коррекцию выходных показаний БИНС летательного аппарата ограниченного радиуса действия, а также погрешностей первичных измерителей БИНС (акселерометров и гироскопов). Алгоритм разрабатывается на основе рассматриваемых моделей показаний БИНС и НРНС.

Модель динамики ЛА в инерциальной системе координат на основе БИНС. Известно, что задачу навигации летательных аппаратов ограниченного радиуса действия удобно решать в стартовой системе координат, неподвижной относительно земной поверхности [1]. Начало этой системы фиксируется относительно центра Земли в момент начала работы БИНС, а положение ЛА определяется проекциями $x_{\rm u}$, $y_{\rm u}$, $z_{\rm u}$ вектора, проведенного из начала координат до ЛА.

Работа бесплатформенной инерциальной навигационной системы летательного аппарата основана на решении уравнения инерциальной навигации [2, 3]:

$$\ddot{\mathbf{x}}_{\mathbf{H}} = (\ddot{x}_{\mathbf{H}}, \ddot{y}_{\mathbf{H}}, \ddot{z}_{\mathbf{H}})^{T} = \mathbf{D}^{T} \ddot{\mathbf{x}}_{1} + \mathbf{g},$$

$$\tag{1}$$

где $\ddot{\mathbf{x}}_1$ — вектор кажущихся ускорений в связанной с центром масс ЛА системе координат $CX_1Y_1Z_1$; $\mathbf{D}^T\ddot{\mathbf{x}}_1=\ddot{\mathbf{x}}_{_{\mathrm{H}}}$ — вектор кажущихся ускорений в инерциальной системе координат (ИСК) $O_{_{\mathrm{H}}}X_{_{\mathrm{H}}}Y_{_{\mathrm{H}}}Z_{_{\mathrm{H}}}$ с началом на поверхности Земли;

$$\mathbf{D} = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{bmatrix} = \begin{bmatrix} \cos\psi\cos\vartheta & \sin\vartheta & -\sin\psi\cos\vartheta \\ \sin\psi\sin\gamma - \cos\psi\sin\vartheta\cos\gamma & \cos\vartheta\cos\gamma & \cos\psi\sin\gamma + \sin\psi\sin\vartheta\cos\gamma \\ \sin\psi\cos\gamma - \cos\psi\sin\vartheta\sin\gamma & -\cos\vartheta\sin\gamma & \cos\psi\cos\gamma - \sin\psi\sin\vartheta\sin\gamma \end{bmatrix}$$

— матрица ориентации связанной системы координат $CX_1Y_1Z_1$ относительно $O_uX_uY_uZ_u$; **g** — вектор гравитационного ускорения; T — символ транспонирования; ϑ , ψ , γ — углы рыскания, тангажа и крена ЛА соответственно.

Уравнение (1) решается посредством двукратного численного интегрирования. Таким образом, для каждого момента времени получается вектор состояния ЛА $\mathbf{y}_{\mathrm{u}} = (\mathbf{x}_{\mathrm{u}}^T, \mathbf{V}_{\mathrm{u}}^T)^T = (x_{\mathrm{u}}(n), y_{\mathrm{u}}(n), z_{\mathrm{u}}(n), V_{\mathrm{ux}}(n), V_{\mathrm{uy}}(n), V_{\mathrm{uz}}(n))^T$, компоненты которого состоят из проекций положения ЛА и его вектора скорости на оси ИСК.

Модель инструментальных погрешностей БИНС. Практически все возмущающие факторы, вызывающие медленно меняющиеся ошибки (ММО) первичных измерителей, приводят к смещению "нулей" $\Delta \ddot{x}_{10}$, $\Delta \ddot{y}_{10}$, $\Delta \ddot{z}_{10}$ и изменению наклона статических характеристик $K_{\ddot{x}_1}$, $K_{\ddot{y}_1}$, $K_{\ddot{z}_1}$ соответствующих акселерометров, а также к смещению нулей $\Delta \psi_0$, $\Delta \theta_0$, $\Delta \gamma_0$ и возникновению скорости уходов ω_{ψ} , ω_{θ} , ω_{γ} соответствующих измерителей углового положения (гироскопов) [3, 4]. Величины K_a ($a=\ddot{x}_1$, \ddot{y}_1 , \ddot{z}_1) определяют появление относительных составляющих ошибок измерителей. Таким образом, модели ММО акселерометров Δa и гироскопов Δb БИНС можно описать выражениями [3, 4]:

$$\Delta a = \Delta a_0 + K_a a \quad (a = \ddot{x}_1, \ddot{y}_1, \ddot{z}_1); \qquad \Delta b = \Delta b_0 + \omega_b t \quad (b = \psi, \vartheta, \gamma).$$

При этом считаются известными среднеквадратические отклонения σ_i (i=1—12) данных ошибок.

Значения медленно меняющихся ошибок измерителей БИНС (акселерометров и гироскопов) ЛА ограниченного радиуса действия на небольших интервалах времени можно считать постоянными [2, 3].

После выведения ЛА в области очень малой плотности атмосферы величины $K_{\ddot{y}_1}$, $K_{\ddot{z}_1}$, $\Delta\gamma_0$, ω_γ практически не вносят вклад в общую ошибку инерциальной навигации [3], и полностью наблюдаемый до момента отсечки двигательной установки вектор ММО имеет вид [3]:

$$\mathbf{x}_{\mathbf{M}} = (\Delta \ddot{x}_{10}, \Delta \ddot{y}_{10}, \Delta \ddot{z}_{10}, K_{\ddot{x}_{1}}, \Delta \psi_{0}, \Delta \vartheta_{0}, \omega_{\psi}, \omega_{\vartheta})^{T},$$

$$M[\mathbf{x}_{\mathbf{M}}] = 0; \quad \mathbf{P}_{\mathbf{M}}(0) = \operatorname{diag}\left\{\sigma_{\mathbf{M}\,ii}^{2}\right\} \quad (i = 1 - 8),$$
(2)

где M — математическое ожидание, $P_{\rm M}$ — ковариационная матрица ошибок.

Алгоритм оценивания медленно меняющихся ошибок первичных измерителей БИНС. В качестве НРНС могут использоваться спутниковые радионавигационные системы или радиолокационные системы, основанные на запросно-ответных методах, позволяющие измерить угловые координаты и расстояния от наземных РЛС до подвижного объекта и рассчитать его координаты в ИСК, а по приращению координат — составляющие скорости подвижного объекта [5].

В работе рассматриваются этап оценивания инструментальных погрешностей жестко связанной интегрированной системы и автономная работа БИНС после получения достоверных оценок $\hat{\mathbf{x}}_{_{\mathrm{M}}}$ [6]. В жестко связанной интегрированной системе БИНС и НРНС обеспечивают состав измерений для общего вычислительного блока, в котором реализован единый фильтр Калмана. Оценивание координат ЛА в такой системе выполняется по разности в показаниях указанных навигационных систем.

Записав уравнение (1) в приращениях и линеаризовав его, получим дифференциальное уравнение ошибок инерциальной навигации в векторно-матричной форме [3]:

$$\Delta \ddot{\mathbf{x}}_{H} = \mathbf{D}^{T} \Delta \ddot{\mathbf{x}}_{1} + \Delta \psi \frac{\partial \mathbf{D}^{T}}{\partial \psi} \ddot{\mathbf{x}}_{1} + \Delta 9 \frac{\partial \mathbf{D}^{T}}{\partial 9} \ddot{\mathbf{x}}_{1} + \Delta \gamma \frac{\partial \mathbf{D}^{T}}{\partial \gamma} \ddot{\mathbf{x}}_{1} + \Delta \mathbf{g},$$
(3)

где **Δ** — ошибки.

Метод линеаризации предполагает разложение нелинейной функции $\Delta\ddot{\mathbf{x}}_{_{\mathbf{I}}}=\mathbf{q}(\Delta\ddot{\mathbf{x}}_{1},\Delta\psi,\Delta\vartheta,\Delta\gamma)=\mathbf{q}(a_{1},...,a_{m}) \text{ в ряд Тейлора с последующим исключением остаточно- го члена } \mathbf{q}_{\mathrm{ост}}=\frac{1}{2}\sum_{i=1}^{m}\frac{\partial^{2}\mathbf{q}}{\partial a_{i}\partial a_{j}}(\Delta a_{i}\Delta a_{j}) \text{ с нелинейными составляющими } [1—4]. В этом случае$

разложение допустимо, поскольку ввиду малости значений Δa_i и Δa_j их произведение на несколько порядков меньше каждой из этих величин. По этой же причине на практике вектором $\Delta \mathbf{g}$ пренебрегают ввиду малости значений его компонентов в сравнении с остальными слагаемыми выражения (3).

Неавтономная радионавигационная система определяет координаты ЛА $\tilde{\mathbf{x}}_{_{\mathrm{II}}}(n) = (\tilde{x}_{_{\mathrm{II}}}(n), \tilde{y}_{_{\mathrm{II}}}(n), \tilde{z}_{_{\mathrm{II}}}(n))^T$ и оценивает проекции его скорости $\tilde{\mathbf{x}}_{_{\mathrm{II}}}(n) = (\tilde{x}_{_{\mathrm{II}}}(n), \tilde{y}_{_{\mathrm{II}}}(n), \tilde{y}_{_{\mathrm{II}}}(n), \tilde{z}_{_{\mathrm{II}}}(n))^T$ в ИСК.

Значения ММО измерителей НРНС могут быть определены при их калибровке и в дальнейшем учтены при обработке измерений. Поэтому измерения НРНС представляются в виде [5]: $\mathbf{y}(n) = \tilde{\mathbf{y}}_{\scriptscriptstyle \mathrm{H}}(n) + \mathbf{f}(n) \ ,$

где $\tilde{\mathbf{y}}_{u} = (\tilde{\mathbf{x}}_{u}^{T}, \tilde{\mathbf{x}}_{u}^{T})^{T}$ — (6×1)-вектор, составленный из (3×1)-вектора координат $\tilde{\mathbf{x}}_{u}^{T}$ и (3×1)-вектора составляющих скорости $\tilde{\mathbf{x}}_{u}^{T}$ ЛА в ИСК; \mathbf{f} — (6×1)-вектор ошибок измерения с известным законом распределения; $\mathbf{y} = (\mathbf{x}_{B}^{T}, \dot{\mathbf{x}}_{B}^{T})^{T}$ — (6×1)-вектор измерений, соответствующий вектору \mathbf{y}_{u} , n — дискретное время.

Введя в рассмотрение непосредственно наблюдаемый вектор разности $\mathbf{x}_{\mathrm{H}} = (\Delta x, \Delta y, \Delta z, \Delta \dot{x}, \Delta \dot{y}, \Delta \dot{z})^T$ как $\mathbf{x}_{\mathrm{H}}(n) = \mathbf{y}_{\mathrm{H}}(n) - \mathbf{y}(n)$, по результатам многократных измерений обеих измерительных систем можно получить оценки $\hat{\mathbf{x}}_{\mathrm{H}}$ вектора \mathbf{x}_{H} и в определенные моменты времени корректировать выходные показания БИНС посредством вычитания составляющих вектора $\hat{\mathbf{x}}_{\mathrm{H}}$ из показаний $\mathbf{y}_{\mathrm{H}}(n)$ [5].

Быстро меняющиеся ошибки измерения параметров вектора $\ddot{\mathbf{x}}_{u}$ достаточно хорошо сглаживаются в интеграторах навигационного контура БИНС, поэтому ошибки выходных показаний системы в основном обусловлены действием компонентов вектора ММО измерителей (2). Для повышения точности БИНС в перерывах между коррекциями ее выходных показаний следует оценивать компоненты вектора (2) с целью последующей коррекции данных первичных измерителей. Для этого введем расширенный вектор состояния динамической системы $\mathbf{x} = (\mathbf{x}_{\mathrm{H}}^T, \mathbf{x}_{\mathrm{M}}^T)^T$. Под системой понимается уравнение ошибок инерциальной навигации. Применяя метод пространства состояний [5], можно записать дифференциальное уравнение в виде $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{\xi}$, $\mathbf{x}(0) = \mathbf{x}_0$, где $\mathbf{\xi}$ — вектор возмущений с параметрами $M[\mathbf{\xi}] = 0$, $M[\mathbf{\xi}\mathbf{\xi}^T] = \mathbf{Q}$; матрица \mathbf{A} и матрица наблюдения \mathbf{C} имеют вид:

$$\mathbf{A}(n) = \begin{bmatrix} 0 & \mathbf{I}\Delta t & 0 & 0 & 0'^T \\ 0 & 0 & \mathbf{D}^T & \mathbf{\Lambda}_1 & \mathbf{\Lambda}_2 \\ 0 & 0 & 0 & 0 & 0'^T \\ 0 & 0 & 0 & 0 & 0'^T \\ 0' & 0' & 0' & 0' & 0'' \end{bmatrix}, \quad \mathbf{C}^T = \begin{bmatrix} \mathbf{I} & 0 \\ 0 & \mathbf{I} \\ 0 & 0 \\ 0 & 0 \\ 0' & 0' \end{bmatrix},$$

где **I** — единичная матрица; 0"— нулевая (2×2)-матрица; 0' — нулевые (2×3)-матрицы; 0 — нулевые (3×3)-матрицы; Λ_1 , Λ_2 — матрицы, полученные из выражения (1):

$$\boldsymbol{\Lambda}_1 = \begin{bmatrix} \alpha_{11} \ddot{x}_1 \Delta t & \alpha_{11} \Delta t & \alpha_{12} \Delta t \\ \alpha_{12} \ddot{x}_1 \Delta t & \alpha_{21} \Delta t & \alpha_{22} \Delta t \\ \alpha_{13} \ddot{x}_1 \Delta t & \alpha_{31} \Delta t & \alpha_{32} \Delta t \end{bmatrix}, \ \boldsymbol{\Lambda}_2 = \begin{bmatrix} \alpha_{11} n \Delta t^2 & \alpha_{12} n \Delta t^2 \\ \alpha_{21} n \Delta t^2 & \alpha_{22} n \Delta t^2 \\ \alpha_{31} n \Delta t^2 & \alpha_{32} n \Delta t^2 \end{bmatrix}.$$

Здесь элементы α_{ij} получены из матрицы

$$\begin{split} \mathbf{L} = & \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} = \\ = & \begin{bmatrix} d_{11}^{\Psi}\ddot{x}_{1} + d_{21}^{\Psi}\ddot{y}_{1} + d_{31}^{\Psi}\ddot{z}_{1} & d_{11}^{9}\ddot{x}_{1} + d_{21}^{9}\ddot{y}_{1} + d_{31}^{9}\ddot{z}_{1} & d_{21}^{\gamma}\ddot{y}_{1} + d_{31}^{\gamma}\ddot{z}_{1} \\ 0 & d_{12}^{9}\ddot{x}_{1} + d_{22}^{9}\ddot{y}_{1} + d_{32}^{9}\ddot{z}_{1} & d_{22}^{\gamma}\ddot{y}_{1} + d_{32}^{\gamma}\ddot{z}_{1} \\ d_{13}^{\Psi}\ddot{x}_{1} + d_{23}^{\Psi}\ddot{y}_{1} + d_{33}^{\Psi}\ddot{z}_{1} & d_{13}^{9}\ddot{x}_{1} + d_{23}^{9}\ddot{y}_{1} + d_{33}^{9}\ddot{z}_{1} & d_{23}^{\gamma}\ddot{y}_{1} + d_{33}^{\gamma}\ddot{z}_{1} \end{bmatrix}; \end{split}$$

 d_{ij}^b — частная производная соответствующего элемента матрицы ${f D}$ по параметру b .

Вводя уравнение наблюдения как $\mathbf{z}(n) = \mathbf{C}\mathbf{x}(n) + \mathbf{f}(n)$ и матрицу экстраполяции $\mathbf{\Phi}(n) = \mathbf{I'} + \mathbf{A}(n)\Delta t$ (здесь $\mathbf{I'}$ — единичная матрица), можно использовать выражения для фильтра Калмана, с целью получения оптимальной оценки элементов расширенного вектора состояния динамической системы, в том числе и оценки $\hat{\mathbf{x}}_{\mathrm{H}}(n)$ всех медленно меняющихся ошибок бортовых измерителей БИНС [1, 2]:

$$\widehat{\mathbf{x}}(n) = \mathbf{\Phi}(n)\widehat{\mathbf{x}}(n-1) + \mathbf{K}(n)\Delta\mathbf{u}(n), \ \widehat{\mathbf{x}}(0) = \widehat{\mathbf{x}}_{0},$$

$$\Delta\mathbf{u}(n) = \mathbf{z}(n) - \mathbf{C}\mathbf{\Phi}(n)\widehat{\mathbf{x}}(n-1);$$

$$\mathbf{P}_{3}(n) = \mathbf{\Phi}(n)\mathbf{P}(n-1)\mathbf{\Phi}^{T}(n) + \mathbf{Q}(n), \quad \mathbf{P}(0) = \mathbf{P}_{0};$$

$$\mathbf{K}(n) = \mathbf{P}_{3}(n)\mathbf{C}^{T}[\mathbf{C}\mathbf{P}_{3}(n)\mathbf{C}^{T} + \mathbf{R}(n)]^{-1};$$

$$\mathbf{P}(n) = \mathbf{P}_{3}(n) - \mathbf{K}(n)\mathbf{C}\mathbf{P}_{3}(n),$$

где $\mathbf{K}(n)$ — весовая матрица; $\Delta \mathbf{u}(n)$ — вектор невязки; $\mathbf{P}_{9}(n)$, $\mathbf{P}(n)$ и $\mathbf{R}(n)$ — соответственно ковариационные матрицы ошибок экстраполяции, оценивания и измерения.

О точности оценивания медленно меняющихся ошибок измерителей БИНС можно судить по отношению следов Sp ковариационных матриц:

$$\delta(n) = \operatorname{Sp}[\mathbf{K}_{M}(n)\mathbf{P}_{HM2}(n)] / \operatorname{Sp}\mathbf{P}_{PM}(n), \tag{4}$$

где $\mathbf{K}_{\text{м}}$, $\mathbf{P}_{\text{нм}}$ и $\mathbf{P}_{\text{гм}}$ — элементы блочных матриц

$$\mathbf{K}(n) = \begin{bmatrix} \mathbf{K}_{\mathrm{H}}(n) \\ \mathbf{K}_{\mathrm{M}}(n) \end{bmatrix}; \ \mathbf{P}_{3}(n) = \begin{bmatrix} \mathbf{P}_{\mathrm{H3}}(n) & \mathbf{P}_{\mathrm{HM3}}(n) \\ \mathbf{P}_{\mathrm{MH3}}(n) & \mathbf{P}_{\mathrm{M3}}(n) \end{bmatrix}; \ \mathbf{P}_{\Gamma}(n) = \begin{bmatrix} \mathbf{P}_{\Gamma\mathrm{H}}(n) & \mathbf{P}_{\Gamma\mathrm{HM}}(n) \\ \mathbf{P}_{\Gamma\mathrm{MH}}(n) & \mathbf{P}_{\Gamma\mathrm{M}}(n) \end{bmatrix}.$$

Здесь $\mathbf{P}_{\Gamma}(n) = [\mathbf{F}(n)]^{-1} = [\mathbf{\Phi}(n)^{-1T} \mathbf{F}(n-1)\mathbf{\Phi}(n)^{-1} + \mathbf{C}^T \mathbf{R}^{-1}(n)\mathbf{C}]^{-1}$ — определяющая границу ковариаций ошибок оценивания (нижнюю границу Крамера-Рао) матрица, рассчитываемая путем обращения информационной матрицы Фишера $\mathbf{F}(n)$ [7].

В этом случае при выборе достаточно малой величины δ_3 критерием принятия решения по коррекции показаний первичных измерителей БИНС является условие:

$$\delta(n) \le \delta_2 \,. \tag{5}$$

Таким образом, до выполнения неравенства (5) по результатам совместной обработки координатной информации от БИНС и НРНС производится коррекция только показаний скоростей и координат БИНС. При выполнении (5) показания первичных измерителей БИНС корректируются в соответствии с оценкой $\hat{\mathbf{x}}_{\text{м}}$, далее БИНС может функционировать в автономном режиме, с коррекцией показаний ее первичных измерителей.

Моделирование работы алгоритма. Для проверки работоспособности алгоритма было проведено моделирование его работы на ЭВМ. В качестве подвижного объекта был выбран ЛА, выводимый за время $t_{\rm B}$ в заданную точку инерциального пространства.

Координаты точки выведения (x_B , y_B , z_B) ЛА в ИСК для разных значений времени полета t_B и углов курса ϕ задавались в соответствии с табл. 1. При этом наведение ЛА осуществлялось на основе расчета и компенсации значения прогнозированного пролета [2].

			T_{ϵ}	аблица 1
$t_{\rm B}$, c	φ, м	$X_{\rm B}$, KM	y_{B} , KM	$Z_{\rm B},~{ m M}$
300	0	790	286	0
	30	684	286	395
	50	508	286	605
400	0	1076	356	0
	30	932	356	538
	50	692	356	824
500	0	1360	408	0
	30	1178	408	680
	50	874	408	1042

Значения инструментальных погрешностей измерителей БИНС задавалась в соответствии с табл. 2.

	Таблица 2_	
Вид	Значение	
погрешности	Эпачение	
Δa_0 , m/c ²	$5,01\cdot10^{-2}$	
K_a	$2,46\cdot10^{-2}$	
Δb_0 , рад	$5,25\cdot10^{-2}$	
ω_b , рад/с	2,33·10 ⁻⁴	

Совместная работа БИНС и НРНС начиналась с 20-й секунды полета ЛА. Для работы фильтра Калмана задавались следующие исходные данные:

$$\begin{aligned} & \mathbf{P}_{\mathrm{H}}(0) = \mathrm{diag} \big[\mathbf{P}_{\mathrm{H}ii} \big], \ \mathbf{P}_{\mathrm{H}ii} = 10^{3} (i = 1 - 6); \ \mathbf{P}_{\mathrm{M}}(0) = \mathrm{diag} \big[\mathbf{P}_{\mathrm{M}ii} \big], \ \mathbf{P}_{\mathrm{M}ii} = 10^{3} (i = 1 - 8); \\ & \mathbf{P}_{\mathrm{HM}}(0) = \mathbf{P}_{\mathrm{MH}}(0) = 0; \ \mathbf{R}(n) = \mathrm{diag} \big[\mathbf{R}_{ii} \big], \ \mathbf{R}_{ii} = 10^{2} (i = 1 - 6); \ \Delta t = 0.15 \text{ c.} \end{aligned}$$

 Γ ауссов вектор ошибок измерения \mathbf{f} с ковариационной матрицей \mathbf{R} на входе фильтра формировался с помощью датчика случайных чисел.

На рис. 1 для примера приведены ошибки оценивания смещения нуля акселерометра $\varepsilon_{\Delta\hat{\vec{x}}_{10}} = \Delta \ddot{x}_{10} - \Delta \hat{\vec{x}}_{10}$ (кривая I) и изменения наклона статической характеристики акселерометра $\varepsilon_{K_{\vec{x}1}} = K_{\vec{x}1} - \hat{K}_{\vec{x}1}$ (2) в переходном режиме работы фильтра Калмана. На рис. 2 приведен график изменения отношения следов ковариационных матриц δ , определяемый в соответствии с выражением (4). Время на рисунках отсчитывается с момента начала совместной работы БИНС и НРНС. Результаты моделирования показали, что установившийся режим работы фильтра Калмана соответствует примерно 65—70 с и более, т.е. $\delta(n) \leq 3$ %. Исходя из этого и следует задавать пороговые значения δ_3 .

На рис. 3 приведены графики изменения модулей ошибок определения координат ЛА $|\Delta \mathbf{x}_u|$ с начала полета при условии, что в случае $\delta(n) \le \delta_3$ БИНС переходит в автономный режим работы ($I - \delta_3 = 3$, 2 - 1%).

Результаты моделирования показали, что реализация предложенного алгоритма позволяет уменьшить ошибки БИНС в сравнении с системой, показания акселерометров и гироскопов которой не корректируются. При заданном времени полета ЛА $t_{\rm B}$ =300, 400 и 500 с в зависимости от $\delta_{\rm 3}$ ошибки инерциальной навигации уменьшаются соответственно в среднем примерно в 2—5, 3—8 и 4—10 раз.

Вывод. Таким образом, использование метода расширения вектора состояния динамической системы и принципов наблюдаемости компонентов расширенного вектора состояния объекта позволили получить работоспособный алгоритм оценивания погрешностей первичных измерителей БИНС, основанный на обработке показаний БИНС и НРНС. Коррекция показаний первичных измерителей позволяет существенно повысить точность инерциальной навигации ЛА ограниченного радиуса действия при дальнейшей автономной работе его БИНС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ориентация и навигация подвижных объектов: современные информационные технологии / Под ред. Б. С. Алешина, К. К. Веремеенко, А. И. Черноморского. М.: Физматлит, 2006. 424 с.
- 2. Иванов Н. М., Лысенко Л. Н. Баллистика и навигация космических аппаратов. М.: Дрофа, 2004. 345 с.
- 3. Пятков В. В. Исследование наблюдаемости медленно меняющихся ошибок измерителей навигационной системы // Изв. вузов. Приборостроение. 1998. Т. 41, № 5. С. 56—60.
- 4. Кавинов И. Ф. Инерциальная навигация в околоземном пространстве. М.: Машиностроение, 1988. 144 с.

- 5. *Неусыпин К. А., Фам Суан Фанг*. Алгоритмические методы повышения точности навигационных систем ЛА. Ханой: Мир, 2009. 126 с.
- 6. Управление и наведение беспилотных маневренных летательных аппаратов на основе современных информационных технологий / Под ред. М. Н. Красильщикова и Г. Г. Серебрякова. М.: Физматлит, 2003. 280 с.
- 7. *Ковальчук И. А., Кошеля И. А.* Алгоритм вычисления нижней границы ковариаций ошибок оценивания при нелинейной фильтрации // Радиоэлектроника. 1985. Т. 28, № 7. С. 82—84.

Сведения об авторах

Павел Валерьевич Васильев — канд. техн. наук, доцент; Военно-космическая академия им. А. Ф. Можайского, Санкт-Петербург; E-mail: vasp1971@mail.ru

Алла Вячеславовна Мелешко — канд. техн. наук; ОАО «НПП "Радар ММС"», Санкт-Петербург; веду-

щий специалист; E-mail: allaluna@list.ru

Вячеслав Викторович Пятков — д-р техн. наук, профессор; ОАО "НИИ телевидения", Санкт-Петер-

бург; начальник научно-технического комплекса;

E-mail: pyatkov@niitv.ru

Рекомендована НИИ телевидения Поступила в редакцию 24.04.14 г.

УДК 681.3

В. В. Никифоров

ПРОТОКОЛ ПРЕДОТВРАЩЕНИЯ ВЗАИМНОГО БЛОКИРОВАНИЯ ЗАДАЧ В СИСТЕМАХ РЕАЛЬНОГО ВРЕМЕНИ

Разработан протокол доступа прикладных задач к глобальным информационным ресурсам в системах реального времени. Протокол позволяет применять дисциплины планирования с переменными приоритетами задач, что обеспечивает существенное повышение эффективности использования процессорного времени в системах с многоядерными процессорами.

Ключевые слова: многозадачные системы, системы на многоядерных процессорах, системы реального времени, взаимосвязанные задачи, протоколы доступа к ресурсам.

Введение. Программные приложения для систем реального времени (СРВ) строятся в виде фиксированного набора задач τ_1 , τ_2 , ..., τ_n . Очередная (j-я) активизация задачи τ_i означает порождение ее очередного (j-го) экземпляра — $\mathit{задания}\ \tau_i^{(j)}$. Порядок предоставления задачам процессорного времени определяется применяемой дисциплиной планирования. Для СРВ важно выбрать дисциплину планирования, гарантирующую своевременное выполнение задач при эффективном использовании ресурсов. Проверка гарантий своевременности выполнения прикладных задач τ_1 , τ_2 , ..., τ_n осуществляется с учетом максимального объема C_i процессорного времени, требуемого для однократного исполнения задачи τ_i и $\mathit{nepuoda}\ T_i$ (минимально допустимого интервала времени между двумя активизациями задачи τ_i) [1, 2].

При решении прикладных задач, совместно использующих глобальные (разделяемые) информационные ресурсы, требуются механизмы, обеспечивающие: a) целостность ресурсов, δ) предотвращение взаимного блокирования задач, ожидающих доступа к разделяемым информационным ресурсам.