НАУЧНЫЕ И ПРАКТИЧЕСКИЕ РАЗРАБОТКИ

УДК 681.7.069.2 DOI: 10.17586/0021-3454-2015-58-3-207-213

МЕТОДИКА ОЦЕНИВАНИЯ КОЭФФИЦИЕНТА ОСЛАБЛЕНИЯ ДВУХСТУПЕНЧАТОГО ФОТОМЕТРИЧЕСКОГО ОСЛАБИТЕЛЯ

Н. К. МАЛЬЦЕВА

Университет ИТМО, 197101, Санкт-Петербург, Россия E-mail: maltseva@grv.ifmo.ru

Представлена методика оценивания коэффициента ослабления фотометрического ослабителя, составленного из двух ступеней — "френелевского" типа и фотометрического шара.

Ключевые слова: оптический ослабитель, поток излучения, фотометрический шар.

Одной из задач при разработке многоступенчатого фотометрического ослабителя (ФМО), входящего в состав многоспектрального имитатора излучения точечных объектов [1], является теоретическая оценка величины обеспечиваемого коэффициента ослабления. С этой целью разработана методика оценивания ослабления оптического сигнала последовательно каждой ступенью схемы ФМО. Данная методика позволяет рассчитать величину потока оптического излучения на выходе ФМО, построенного по схеме двухступенчатого прибора с сохранением исходного угла расходимости пучка лучей. Методика составлена для наиболее общего пространственного и спектрального распределения потока излучения, проходящего через элементы ослабителя.

Для обеспечения широкого диапазона коэффициента ослабления представляется целесообразным построение ФМО по двухуровневой схеме ослабления: первая ступень — "френелевский" ослабитель (отражающие клинья из оптического стекла), вторая ступень — фотометрический шар (ФМШ). При этом наиболее стабильная "френелевская" ослабляющая ступень служит эталоном для менее стабильной — ФМШ. Комбинация этих элементов позволяет создать многоступенчатый ослабитель, гарантирующий не только широкий диапазон ослабления (при высоком общем ослаблении), но и мультипликативность общего коэффициента ослабления ФМО. Коэффициент ослабления определяется отношением потока излучения на входе ФМО к входному потоку: $K_{\rm осл} = \Phi_{e\Delta\lambda, \rm вых} / \Phi_{e\Delta\lambda, \rm вх}$.

Оптическая схема одного из вариантов такого ослабителя [1] включает зеркальный сферический объектив, в фокальной плоскости которого расположена излучающая диафрагма абсолютно черного тела [2]. Параллельный пучок лучей падает на оптический клин, отражение от внешней грани которого обеспечивает ослабление потока излучения. После отражения пучок лучей фокусируется сферическим объективом и направляется плоским зеркалом на входную диафрагму ФМШ.

Рассмотрим последовательно преобразование потока излучения, поступающего в схему ослабителя от исходного излучателя O (рис. 1, *a*), имеющего малую излучающую диафрагму d_{u} . При заданной индикатрисе $I_e(\alpha, \beta) = I(\alpha, \beta)^*$ и функции спектрального распределения силы

^{*} Здесь и во всех последующих обозначениях подстрочный индекс "е" опущен, так как они приводятся в системе энергетических фотометрических величин [3].

излучения источника поток излучения в апертуре пучка размером $4\alpha_0\beta_0$ в плоскости $o_1y_1z_1$ определяется по функции распределения облученности в этой плоскости.

Облученность в некоторой точке плоскости элемента *l* (см. рис. 1, *a*) выражается законом обратных квадратов расстояний [3]:

$$E_{\Delta\lambda_1}(y_1, z_1) = \frac{\mathbf{I}_{\Delta\lambda\pi\mathbf{p}}(\psi + \psi_0)}{l^2},\tag{1}$$

где $\psi = \arccos \frac{l_1}{l} = \arcsin \left[\left(\frac{l_1}{l} \right)^2 \operatorname{tg}^2 \vartheta + \sin^2 \gamma \right]^{1/2}$ — угол между вектором $\mathbf{I}_{\Delta\lambda\pi p}$ силы излучения и

нормалью к плоскости $o_1y_1z_1$; l_1 — расстояние между излучателем O и плоскостью $o_1y_1z_1$, тогда

$$l = \left[l_1^2 + y_0^2 + z_0^2 + y_1^2 + z_1^2 + 2\sqrt{\left(y_0^2 + z_0^2\right)\left(y_1^2 + z_1^2\right)\cos\left(\arctan\frac{y_0y_1 - z_0z_1}{y_1z_0 + y_0z_1}\right)} \right]^{1/2},$$
(2)

при этом $\vartheta = \arctan \frac{z_0 - z_1}{l_1}$ и $\gamma = \arcsin \frac{y_0 - y_1}{l}$ — составляющие угла ψ в меридиональной и са-

гиттальной плоскостях пучка, ориентированных сечением плоскости $o_1y_1z_1$; ψ_0 — угол между вектором **I**₀ максимальной силы излучения и нормалью к плоскости $o_0y_0z_0$;

$$\mathbf{I}_{\Delta\lambda\Pi p}\left(\boldsymbol{\psi}+\boldsymbol{\psi}_{0}\right) = I_{\lambda_{\max}}\left(\boldsymbol{\psi}+\boldsymbol{\psi}_{0}\right) \int_{\Delta\lambda} i_{\lambda}\left(\lambda,\boldsymbol{\psi}+\boldsymbol{\psi}_{0}\right) \tau_{l_{1}}\left(\lambda\right) d\lambda$$
(3)

— приведенная к плоскости $o_1y_1z_1$ сила излучения источника O; $I_{\lambda_{\max}}(\psi + \psi_0)$ — максимальная спектральная плотность силы излучения; $i_{\lambda}(\lambda, \psi + \psi_0)$ — нормированная функция спектральной плотности силы излучения; $\tau_{l_1}(\lambda)$ — спектральный коэффициент пропускания среды (область Oo_1).

Рассмотрим поток излучения, падающий на плоскость элемента 1:

$$\Phi_{\Delta\lambda_{1}} = \int_{-y_{\pi}}^{y_{\pi}} \int_{-z_{\pi}}^{z_{\pi}} E_{\Delta\lambda_{1}}(y_{1}, z_{1}) dy_{1} dz_{1} .$$
(4)

Тогда с учетом изложенного выражение (1) преобразуется к виду

$$E_{\Delta\lambda_{1}} = I_{\lambda_{\max}} \left(\psi + \psi_{0} \right) \frac{\Delta\lambda}{l^{2}} = \frac{I_{\lambda_{\max}} \left(\psi + \psi_{0} \right) \Delta\lambda_{\min} \left(\psi + \psi_{0} \right)}{l^{2}}, \qquad (5)$$

где

$$\Delta\lambda_{\rm np}\left(\psi+\psi_0\right) = \int_{\Delta\lambda} i_\lambda \left(\lambda,\psi+\psi_0\right) \tau_{l_1}\left(\lambda\right) d\lambda \tag{6}$$

— эквивалентный интервал длин волн излучения, падающего на элемент $l; y_n, z_n$ — линейные размеры пятна на элементе l (см. рис. 1, a).

Если спектральный состав излучения не изменяется в пределах рассматриваемой апертуры пучка, т.е. $i_{\lambda}(\lambda, \psi + \psi_0) = i_{\lambda}(\lambda)$, то согласно выражению (6)

$$\Phi_{\Delta\lambda_{1}} = \Delta\lambda_{\Pi p} I_{0,\lambda_{\max}} \int_{-y_{\Pi}}^{y_{\Pi}} \int_{-z_{\Pi}}^{z_{\Pi}} \frac{F_{I}\left(\psi + \psi_{0}\right) dy_{1} dz_{1}}{l^{2}}, \qquad (7)$$

где $I_{0,\lambda_{\max}}$ — максимальная спектральная плотность силы излучения в направлении, совпадающем с вектором I_0 ; $F_I(\psi + \psi_0)$ — нормированная индикатриса излучения. При круглой входной апертуре элемента *1* выражение (4) целесообразно записывать в полярных координатах [1]:

$$\Phi_{\Delta\lambda_1} = \int_{0}^{r_a} \int_{0}^{2\pi} E_{\Delta\lambda_1}(\rho, \psi) \rho d\rho d\psi, \qquad (8)$$

где

$$\rho = \sqrt{y_1^2 + z_1^2}, \quad \psi = \operatorname{arctg} \frac{y_1}{z_1},$$
(9)

т.е. в выражение (5) следует подставить уравнение (9) и величину r_a (радиус пятна рассматриваемого пучка в плоскости $o_1 y_1 z_1$).

Для источника Ламберта [3] справедливо $F_I(\psi + \psi_0) = \cos(\psi + \psi_0)$, тогда выражение (8) в линейных координатах плоскости $o_1 y_1 z_1$ примет вид

$$\Phi_{\Delta\lambda_{1}} = I_{\Delta\lambda_{0}} \int_{-y_{\pi}}^{y_{\pi}} \int_{-z_{\pi}}^{z_{\pi}} \frac{\cos(\psi + \psi_{0}) dy_{1} dz_{1}}{l^{2}}, \qquad (10)$$

где $I_{\Delta\lambda_0} = I_{0,\lambda_{\max}} \Delta\lambda_{\text{пр}}$, или в полярных координатах плоскости $o_1 y_1 z_1$ — вид

$$\Phi_{\Delta\lambda_1} = I_{\Delta\lambda_0} \int_0^{r_a} \int_0^{2\pi} \frac{\cos(\psi + \psi_0)\rho d\psi d\rho}{l^2(\rho, \psi)}.$$
(11)

Заметим, что в схеме ослабителя предполагается осевая юстировка эталонного излучателя O, поэтому в расчетных формулах можно принять $y_0 = z_0 = 0$ с погрешностью юстировки.

С учетом точного согласования апертур $(\beta_0/l, r_a, d_{\mu}/2)$ пучков по нулевым лучам β_0, α_0 исходного пучка поток на выходе первой ступени ослабителя определяется по величине входного сигнала и спектральному коэффициенту пропускания первой ступени ослабителя $\tau_1(\lambda)$:

$$\tau_{\mathrm{I}}(\lambda) = \tau_{l_{2}}(\lambda) R_{1}(\lambda) R_{2}(\lambda),$$

где τ_{l_2} — спектральный коэффициент пропускания для области $o_1 o_1$; $R_1(\lambda)$, $R_2(\lambda)$ — спектральные коэффициенты отражения первого и второго элементов оптической схемы (см. рис. 1, *a*).

В предположении, что спектральный состав потока излучения не изменяется в зависимости от направления лучей в пучке, целесообразно далее перейти (при условии согласования апертур) к нормированным спектральным характеристикам излучения. Относительное спектральное распределение потока излучения на выходе первой ступени ослабителя найдем по исходному распределению силы излучения $i_{\lambda}(\lambda)$ и спектральным коэффициентам пропускания τ_{l_1} , τ_{l_2} и $\tau_{I}(\lambda)$:

$$i_{\lambda I}(\lambda) = i_{\lambda}(\lambda)\tau_{l_{1}}(\lambda)\tau_{l_{2}}(\lambda)\tau_{I}(\lambda).$$
(12)

Тогда, определив по формуле (10) или (11) величину потока $\Phi_{\Delta\lambda_1}$, можно перейти от нормированной функции $\phi_{\lambda I}(\lambda)$ к функции

$$\Phi_{\Delta\lambda I} = \frac{\Phi_{\Delta\lambda_{I}} \varphi_{\lambda I}}{d\lambda \sum_{m=1}^{n} (\varphi_{\lambda I})_{m}},$$
(13)

где *n* — число элементарных участков равной протяженности, на которые разбивается весь значимый диапазон длин волн $\Delta\lambda$ функции $\phi_{\lambda I}(\lambda)$.

Поток на входе второй ступени ослабителя определяется выражением

$$\Phi_{\Delta\lambda\mathrm{II}} = \int_{\Delta\lambda} \Phi_{\Delta\lambda\mathrm{I}}(\lambda) \tau_{l_3}(\lambda) \tau_{\mathrm{II}}(\lambda) \tau_{l_4}(\lambda) d\lambda = \sum_{q=1}^{p} \Phi_{\lambda_q\mathrm{II}}, \qquad (14)$$

a)

где $\Phi_{\lambda_q \Pi}$ — монохроматический поток излучения, сосредоточенный в малом *q*-м интервале длин волн $d\lambda$ (рис. 2).

Монохроматическая облученность выходной диафрагмы второй ступени ослабителя при $\lambda = \lambda_a$

$$E_{d\lambda\Pi} = \frac{\Phi_{\Delta\lambda\Pi}}{S_{\Pi}} \tau_{\Pi}(\lambda), \tag{15}$$

где $\Phi_{\Delta\lambda II}$ определяется в виде ряда *p* значений по формуле (14); S_{II} — площадь внутренней поверхности фотометрического шара (ступени II); $\tau_{II}(\lambda)$ определяется для каждого *q*-го из *p* малых интервалов $d\lambda$.

Используя результат расчетов (15), можно далее получить функцию спектрального распределения облученности выходной диафрагмы $d_{\text{вых}}$ второй ступени в абсолютных значениях как серию *p* значений монохроматической (в малом интервале длин волн $d\lambda$) облученности:

$$E_{\lambda_q \Pi}(\lambda) = \frac{E_{d\lambda \Pi}}{d\lambda_q}.$$
(16)

Если известно распределение облученности по площади диафрагмы $d_{\text{вых}}$ (рис. 1, δ), т.е. известна функция $E_{d\lambda \text{II}}$, то построив согласно выражению (16) функцию $E_{\lambda_q \text{II}}(\lambda)$, можно определить интегральную (энергетическую) облученность диафрагмы $d_{\text{вых}}$.

Поскольку для определения потока излучения на выходе элемента 3 (см. рис. 1, *a*) потребуется переход к индикатрисам излучения выходной диафрагмы $d_{\text{вых}}$ в форме четырехмерного распределения спектральной энергетической яркости от координат $y_{\text{II}}, z_{\text{II}}$ и углов 9, γ (см. рис. 1, δ) или двумерной индикатрисы силы излучения $I_{\Delta\lambda\text{II}}(9,\gamma)$ с выходной диафрагмы $d_{\text{вых}}$ площадью $S_{\text{вых}}$, если телесный угол, определяемый углом 9_0 , мал, то можно с достаточной точностью принять диафрагму $d_{\text{вых}}$ за точечный излучатель.

Тогда индикатриса силы излучения

$$I_{\Delta\lambda II}(\gamma) = K I_{0II} F_{II}(\gamma), \qquad (17)$$

где $K = I_{\Delta\lambda II}/I_{0II}$ — нормированная по величине максимального вектора силы излучения I_{0II} индикатриса излучающей диафрагмы d_{Bbix} .

Расчет величины потока излучения, проходящего через входной зрачок $d_{изм}$ измерительного устройства, согласованного с апертурой проходящего пучка, осуществляется по формулам (1)—(14) применительно к элементу 3, т.е. в координатах $o_3y_3z_3$ (см. рис. 1, *a*).

Здесь также предполагается согласование диаметра входной диафрагмы $d_{\rm изм}$ с апертурой исходного пучка 2γ при достаточно малом значении $d_{\rm вых}$.

Возможны некоторые упрощения вычислений, если считать, что в каждой точке диафрагма $d_{\rm вых}$ излучает по закону Ламберта [3], и спектральный состав излучения не зависит от направления вектора яркости $L_{\Delta\lambda}$. Если, кроме того, угол 2 γ малый (см. рис. 1, δ), тогда можно принять:

$$\Phi_{\Delta\lambda} = S_3 L_{\Delta\lambda\Pi} \int_{-y_{\rm III}}^{y_{\rm III}} \int_{-z_{\rm III}}^{z_{\rm III}} \frac{\cos(J(y_{\rm II}, z_{\rm II}))}{l_5^2(y_{\rm II}, z_{\rm II})} dy_{\rm II} dz_{\rm II},$$
(18)

где S_3 — площадь элемента 3; $l_5 = l_5(y_{II}, z_{II})$; $J = J(y_{II}, z_{II})$ — угол падения лучей на элемент 3; y_{II} , z_{II} — линейные размеры излучающей диафрагмы шара.

При последнем предположении и сравнительно большом угле 2_γ выражение (18) примет следующий вид:

$$\Phi_{\Delta\lambda} = L_{\Delta\lambda\Pi} \int_{-y_{\rm III}}^{y_{\rm III}} \int_{-z_{\rm III}}^{z_{\rm III}} dy_{\rm II} dz_{\rm II} \int_{-y_3}^{y_3} \int_{-z_3}^{z_3} \cos(J_{\rm II}(y_3, z_3, y_{\rm II}, z_{\rm II})) dy_3 dz_3,$$

где *y*₃, *z*₃ — линейные размеры пятна на элементе 3.

Представленная методика оценивания величины потока излучения последовательно при прохождении отдельных элементов ослабителя является основой для расчета спектральных коэффициентов ослабления ФМО, составленного из двух ступеней — "френелевского" типа и фотометрического шара.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ильинский А. В., Мальцева Н. К.* Метод многоспектральной имитации излучения точечных объектов // Оптич. журн. 2010. Т. 77, № 2. С. 74—78.
- 2. А. с. 1242719, МКИ GOI J 1/02. Фотометрический ослабитель / А. В. Ильинский, Г. Г. Ишанин, Н. К. Мальцева. 1989.
- 3. Ишанин Г. Г., Козлов В. В. Источники излучения. СПб: Политехника, 2009. 325 с.

Сведения об авторе									
Надежда Константиновна Мальцева		канд.	техн.	наук,	доцент;	Университет	ИТМО;	кафедра	оптико-
		электронных приборов и систем; E-mail: maltseva@grv.ifmo.ru							

Рекомендована кафедрой оптико-электронных приборов и систем

Поступила в редакцию 12.02.14 г.

Ссылка для цитирования: *Мальцева Н. К.* Методика оценивания коэффициента ослабления двухступенчатого фотометрического ослабителя // Изв. вузов. Приборостроение. 2015. Т. 58, № 3. С. 207—213.

METHOD FOR ESTIMATING OPTICAL FLUX ATTENUATION BY TWO-STAGE OPTICAL ATTENUATOR

N. K. Maltseva

ITMO University, 197101, Saint Petersburg, Russia E-mail: maltseva@grv.ifmo.ru

A method is proposed for evaluating optical flux attenuation by each stage of the two-stage photometric attenuator involving a Fresnel-type component and integrating sphere.

Keywords: optical attenuator, radiation flux, integrating sphere photometer.

Data on author

Nadezhda K. Maltseva – PhD, Assosiate Professor; ITMO University; Department of Optoelectronic Systems and Devices; E-mail: maltseva@grv.ifmo.ru

Reference for citation: *Maltseva N. K.* Method for estimating optical flux attenuation by two-stage optical attenuator // Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie. 2015. Vol. 58, N 3. P. 207—213 (in Russian).

DOI: 10.17586/0021-3454-2015-58-3-207-213