УДК 664.6

Технико-экономическое обоснование эффективности тестораскаточной машины с охлаждением теста

канд. техн. наук Андреев А.Н. andreevanatoly@yandex.ru

Санкт-Петербургский национальный исследовательский университет ИТМО Институт холода и биотехнологий 191002, Санкт-Петербург, ул. Ломоносова, 9

В работе проведен расчет технико-экономического обоснования эффективности тестораскаточной машины с охлаждением слоеного теста.

Ключевые слова: тестораскаточная машина, слоеное тесто, отлежка.

Feasibility study of the effectiveness of a machine with cooled pastry

Ph.D. Andreev A.N. andreevanatoly@yandex.ru

Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics.

Institute of Refrigeration and Biotechnology
191002, St. Petersburg, Lomonosov str., 9

In the calculation of a feasibility study on the effectiveness of a machine with cooled puff pastry.

Keywords: sheeters, puff pastry, otležka.

В ассортименте мучных изделий особое место занимают изделия из пресного слоеного теста. Благодаря слоистой структуре, высокой калорийности и вкусовым качествам эти изделия пользуются большим спросом у населения [1]. В производстве слоеных изделий наиболее трудоемким является процесс раскатки куска теста с заложенным внутрь жиром. Тестораскаточные машины не полностью удовлетворяют требованиям производства слоеных изделий, не обеспечивают высокой производительности, не учитывают реологические свойства и поведение полуфабриката при раскатке и требуемого качества слоеного полуфабриката[2,3]

Андреев А.Н. Технико-экономическое обоснование эффективности тестораскаточной машины с охлаждением теста / А.Н. Андреев // Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств» , 2013. - №4. [Электронный ресурс]: http://www.processes.ihbt.ifmo.ru

При раскатке слоеного теста, на тестораскаточной машины температура теста повышается в среднем на 2-3 0 С., что приводит к размягчению маргарина, выделение его из слоев, замазыванию валков. При этом требуется дополнительный расход муки на подпыл теста, нарушается слоистость, снижается производительность машины. Эти обстоятельства вынуждают вести слоение циклично, с 3-х кратной отлежкой тестовых заготовок между раскатками в течение 30–40 мин. в холодильных камерах, для охлаждения жира и снятия внутренних напряжений. Поэтому проблема сокращения количества отлежек теста, повышение производительности машины, улучшение качество слоеного полуфабриката и готовых изделий актуальна.

Был изготовлен опытно-промышленный образец тестораскаточной машины на базе MPT-60M, обеспечивающий способ обработки слоеного теста с одной отлежкой и охлаждением его при раскатке [4].

По результатам испытаний, в производственных условиях опытнопромышленного образца тестораскаточной машины выработаны рациональные режимы раскатки слоеного теста на машине, реализующие ресурсосбережение данного производства.

В работе приведено технико-экономическое обоснование эффективности тестораскаточной машины с охлаждением теста.

В основу нижеприведенных расчетов принята «Методика определения экономической эффективности внедрения новой техники, механизации и автоматизации производственных процессов в промышленности»

Степень повышения производительности механизированного труда характеризуется коэффициентом превышения производительности машинного труда Пм над производительностью ручного труда Пр.:

$$K\Pi = \Pi M / \Pi p;$$
 (1)

Расчетами установлено, что Кп составляет: для тестораскаточной машины типа MPT-600M при существующей технологии приготовления слоенного теста Кп=1,9; для машины, обеспечивающей охлаждение теста с рекомендуемой технологией раскатки ${\rm Kn}{=}3,4.$

При внедрении в производство тестораскаточной машины с охлаждением теста и рекомендуемой технологией, производительность труда увеличивается в 1,8 раза, по сравнению с работой на машине строго образца.

Известно, чем выше коэффициент Кп, тем прогрессивнее машина.

Суммарные капиталозатраты K_2 , связанные с внедрением тестораскаточной машины с охлаждением включают стоимости машин: C_0 , транспортирования ее $C_{\scriptscriptstyle T}$, монтажа $C_{\scriptscriptstyle MO}$ и определяются по формуле:

$$K_2 = C_0 + C_T + C_{MO}$$
, py6. (2)

Стоимость машины определена по методике укрупненного расчета стоимости изделия с допущением, что затраты на изготовление ее будут изменяться пропорционально весовым показателям.

Андреев А.Н. Технико-экономическое обоснование эффективности тестораскаточной машины с охлаждением теста / А.Н. Андреев // Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств» , 2013. - №4. [Электронный ресурс]: http://www.processes.ihbt.ifmo.ru

По подсчетам стоимость машины улучшеной составляет C_{02} =99000 руб, а машины старого образца C_{01} =89530 руб.

Расчетами установлено, что K_2 = 118800 руб., а при базовом варианте , т.е. при использовании машины старого образца, K_1 = 196966 руб.

Стоимость производственной эксплуатации включает переменные расходы (зарплату с начислениями ЗП, стоимость электроэнергии $C_{\rm эл}$,) и условно-постоянные расходы (стоимость технического обслуживания $C_{\rm то}$ и текущего ремонта с учетом амортизационных отчислений) и определяется по формуле:

$$C_{IJ} = 3\Pi + C_{JI} + C_{TO} \text{ руб/год.}$$
 (3)

 $3\Pi = O_{KЛад}*11 + 10\% = 17000*11 + 10\% = 205700$ руб.

 $C_{\text{эл}} = \Pi$ отребление энергии* 2,5 руб/кВт

 $C_{TO} = C_0 * 18\%$

Расчетами установлено, что при базовом варианте

 $C_{\text{ns}}^1 = 205700 + 2728 + 16115 = 224544 \text{ py6}.$

При рекомендуемом

$$C_{\text{no}}^2 = 205700 + 3216 + 17820 = 226736 \text{ py6}.$$

Годовой объем работы машины определен по формуле:

 $Q_p = Q*d*t_c*K_в$ кг/год

Q-часовая производительность машины; принята для базового варианта Q=32 кг/час, рекомендуемой Q=60 кг/час

d- количество рабочих дней в году; принята односменная работа (248 дней);

 $t_{\rm c}$ – продолжительность рабочей смены, час (8 часов)

 $K_{\mbox{\tiny B}}$ -Коэффициент использования машины во времени (принимаем равным 0,8).

Расчетами установлено, что годовой объем работы составляет при базовой машине $Q_1^{\tt F}=32*248*8*0,8=50790$ кг/год; при рекомендуемой $Q_2^{\tt F}=60*8*248*0,8=95232$ кг/год.

Стоимость машинной обработки одного кг слоенного теста составит соответственно:

При базовом варианте
$$C_{01} = \frac{C_{\Pi 3}^{1}}{Q_{\Gamma}} = \frac{224544}{50790} = 4,42$$
 руб/кг

При рекомендуемом варианте
$$C_{o2} = \frac{C_{\pi 3}^2}{Q_r} = \frac{226736}{95232} = 2,38$$
 руб/кг

Стоимость сырья на 1 кг слоеного теста:

Тесто слоеное дрожжевое

Наименование	Расход на 100 кг	Оптовая цена за 1	Цена за общее
сырья	муки, кг	кг, руб	количество, руб
Мука пшеничная хлебопекарная в/с	100	12	1200
Дрожжи прессованные	6	35	210
Соль поваренная пищевая	1,7	4	6,8
Маргарин столовый	6	60	360
Маргарин столовый на слоение	43,5	65	2827,5
Улучшитель	1	184	184
Сахар-песок	10	33	330
Молоко сухое	4	78	312
Вода	45	-	-
Итого	217,2		5430
Стоимость одного кг теста, руб		5430/217,2=25	

Тесто слоеное бездрожжевое

Наименование	Расход на 100 кг	Оптовая цена за 1	Цена за общее
сырья	муки, кг	кг, руб	количество, руб

Мука пшеничная хлебопекарная в/с	100	12	1200
Соль поваренная пищевая	1,8	4	7,2
Маргарин столовый на слоение	45	73	3285
Меланж	6,3	54	340
Кислота лимонная	0,2	69	14
Вода	42,3	-	-
Итого	195,6		4847
Стоимость одного кг теста, руб		4847/195,6=25	

С учетом стоимости сырья на кг полуфабриката, стоимость годового объема производства слоенного теста, при стоимости сырья 25 руб/кг составит соответственно:

При базовом варианте C_1 =50790*4,42=224492 руб.

При рекомендуемом варианте $C_2 = 95232 \times 2,38 = 226652$ руб.

Окупаемость капитальных вложений определяется по формуле:

$$T = \frac{K_2 - K_1}{\frac{C_1 * Q_2^{r}}{Q_1^{r}} - \frac{C_2 * Q_2^{r}}{Q_2^{r}}} = \frac{99000 - 89530}{\frac{224544 * 95232}{50790} - \frac{226736 * 95232}{95232}} = 0,049$$

Коэффициент экономической эффективности капитальных вложений K, представляющих собой величину обратную сроку окупаемости T, означает годовую экономию на руб. дополнительных капитальных вложений:

$$E = \frac{1}{T} = \frac{1}{0.049} = 20.4$$

Годовой экономический эффект определяется по формуле:

$$\ni = (\frac{c_1 * Q_2^r}{Q_1^r} + E_H * K_1) - (\frac{c_2 * Q_2^r}{Q_2^r} + E_H * K_2)$$

$$9 = (\frac{224544*95232}{50790} + 0.15*89530) - (\frac{226736*95232}{95232} + 0.15*99000) = 192867 \text{ py6}.$$

Андреев А.Н. Технико-экономическое обоснование эффективности тестораскаточной машины с охлаждением теста / А.Н. Андреев // Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств» , 2013. - №4. [Электронный ресурс]: http://www.processes.ihbt.ifmo.ru

Список литературы:

- 1. Андреев А.Н. Производство сдобных хлебобулочных изделий. СПб.: ГИОРД, 2003. 480с.
- 2. Андреев А.Н. Влияние режимов раскатки на производительность тестораскаточной машины и качество слоеного полуфабриката. Партнер. Кондитер, Хлебопек. 12/2007.
- 3. Арет В.А., Николаев Б.Л., Николаев Л.К. Физико-механические свойства сырья и готовой продукции.- СПб.: ГИОРД, 2009.- 448 с.
- 4. Андреев А.Н. Влияние охлаждения слоеного теста на производительность тестораскаточной машины, свойства полуфабриката и качество изделий. Партнер. Кондитер, Хлебопек. 12/2007. 32-35 с.