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Представленные решения дают анализ напряженного состояния рассмотренных 

конструкций, согласно которому определяются максимальные напряжения в материале 

конструкций для n=1 (состояние линейной упругости) и для n=∞ (решение в случае идеальной 

пластичности). Все решения приведены для различных геометрических параметров конструкций, 

различных граничных условий и нескольких значений m (m=1/n). результаты вычислений показаны 

графически. В соответствии с графиками определяются значения относительного коэффициента 

концентрации напряжения Fm. Если коэффициент Fm известен, то максимальные напряжения в 

конструкции в состоянии ползучести нетрудно оценить (на основе линейно-упругого анализа) в 

зависимости от нагрузки и геометрических характеристик этой конструкции. 

 Показано, что если распределение напряжений известно для случая линейной упругости 

(n=1), то скорость изменения напряжений (и, в особенности, максимального напряжения) в 

зависимости от n можно определить, по существу, подобно решению задачи о линейно-упругих 

температурных напряжениях, так как «температурные» деформации выражаются в большей 

степени в изменении формы, чем в изменении объема. 

 Ключевые слова: ползучесть, изгибающий момент, радиальное и окружное напряжения, 

деформация, граничное условие. 

 

Investigation of stress state for estimating the greatest stress in structures 

subject to creep 

The solutions to be represented give analysis of stress state of the structures considered. According to 

this analysis the greatest stresses in the structures for n=1 (linear-elastic structures) and n=∞ (the perfectly 

plastic solution) are determined. All the solutions are given for different parameters of the structures, 

different boundary conditions and several values of m (m=1/n). The results are shown graphically. 

According to the graphs relative stress concentration factor Fm can be determined. As Fm is known, the 

greatest stress in a structure subject to creep may be estimated without too much difficulty (by linear-elastic 

analysis) in terms of the applied load and the geometrical parameters of the structure. 

It is shown, that if the stress distribution is known in the linear case (n=1), the rate of change of the 

stresses (and in particular of the greatest stress) with n may be determined from, essentially, a linear-elastic 

thermal stress problem as the “thermal” strains consist of changes in shape rather than changes in volume. 

 Keywords: creep, bending moment, redial and circumferential stresses, strain, boundary condition. 

 
  

The structures considered [1] are shown schematically in Table 1. 

 All the usual assumption of linear-elastic small deflection theory are used [5] ; thus we 

learn nothing, for example, about local stress concentration effects in the regions where plates 
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join thicker plates (structure E) or rigid foundations (structure D). Nor do we learn anything 

about plates with membrane action. 

 Thus while it may seen paradoxical that acute, local, stress concentration effects have 

been ignored, it seems clear that the study, in so far as it leads to empirical general conclusions, 

may be of some use in tackling problems of local stress concentration factors. 

 In Fig. 1 the relative stress concentration factor Fm [1] is plotted against the material 

parameter m, which is the reciprocal of the exponent n [1]: 

 

 The factor Fm is defined as on the following equation [1]: 

 

 But with an obvious change of subscript. 

  

 For most of the structures solutions were obtained, in addition to those for n=1 and n=∞ 

(m=1 and m=0, uspectively) for m=0.1; 0.2; 0.4; 0.6; and 0.8 

 Table 1 gives for each structure the value of the greatest stress,  in terms of the load 

and geometrical parameters for the case n=1. Use of this expression in conjunction with the 

appropriate graph in Fig. 1 gives the value of  for any load and value of the exponent n.  

Further details of the methods of solution for the various structures are represented (they 

were not given in paper [1] because their inclusion would made it too long) 
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Table 1. 
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Fig.1 Results for structures shown in Table 1 
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Details of the various solutions. 

A. I – section in pure bending. 

 This is a very simple problem. By symmetry the neutral axis is at the centre of the 

section. As “plane sections remain plane” it is a straightforward matter to express the strain rate 

at any distance y from the neutral axis in terms of y, the rate of change of curvature of the 

section, and the material constants [7]. Appropriate integration gives the bending moment, and 

a little algebra puts the results in the desired form. 

B. Uniformly loaded beam with clamped ends. 

 The origin was taken at the centre, and the ends of the beam were regarded as “floating 

boundaries”. 

 By statics the bending moment is of the form 

 

 The rate of change of curvature,  is related to the banding moment by a law [3] 

 

 In which D depends on the cross-section shape and size and the material constant B. Thus 

for any finite value of n,  may be determined as a function of x. Integration of  with respect 

to x gives the rate of change of slope. Which is zero by symmetry at x=0. Integrating 

graphically to x=l for which 

 

 Gives the value of x at the end of the beam: this is used in the first equation to give the 

fixed-end moment M, which is readily expressed in terms of the total distributed load and the 

length of the beam. For the case n→∞ conventional perfectly plastic analysis is used. Use of the 

results of A, above, enables the results to be presented in the form of Fig. 1. 

C. Rotating parallel sided disc. 

 The equilibrium equation at radius r is 

 

 Where  and are radial and circumferential stress, respectively, 

 

 And ρ and ω as defined in Fig. 1. The strain rate compatibility equation is 
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where  and  are the rates of change of strain in the radial and circumferential 

directions, respectively. The biaxial stress-strain rate law is [13] 

 

 

 where 

                           

 

 To solve the problem for a disc with no central hole and supporting, say, no edge mass 

we must solve equations (1) – (6) simultaneously, subject to the boundary conditions 

                                       

                                       

 the simplest way of solving the equations seems to be to change the independent variable 

by making the substitution 

                                                

 Equations (1) and (3) become, respectively: 

 

 

 

 Differentiating equation (4) with respect to x, substituting for  from equation (11) and 

using equations (4) and (5) we have: 

 

 

 where, as before, m=1/n. 

 

 Equations (12) and (10) make it possible to use a Runge - Kutta method to “march out” 

values of   and  for increasing x, if the value of  is known at x=0. We do not 

know the values of  at the origin, but we are free to assign a value, say,  to them 

and apply a scale factor to all the stresses later on. 

 Equation (10) is determinate at x=0, but using L`Hopital`s rule we find 

 

Simultaneous solution of equations (12) and (13) at x=0 gives the following starting derivatives 

at x=0 
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 Fig. 2 shows the solutions, obtained by computer, for m=0, m=0.4 and m=1. It is easy to 

show that for m=1  and  are independent of x. The radial stress becomes zero at 

=16/7; thus by equation (9), substituting for α: 

 

 It is readily checked that  has a maximum at r=0. 

 For m=0,  so far m=0, . In this 

case, of course,  is constant over the whole disc. 

 For discs supporting edge mass the boundary conditions are different. If the total mass, 

representing turbine blades, etc., is equal to β times the mass of the disc itself, and the is no 

circumferential cohesion in this mass, it is easily shown that at the rim, radius a, 

 

A point such as A, Fig. 2, may represent the radial stress condition at the edge of the 

hole. Let the coordinates of A be  

 

 From equations (2) and (9): 

 

 Combining equations (15) and (16) and substituting  we have 

 

 Thus a line radiating from the orogin as shown in Fig. 2 intersects the graphs of 

 representing the edge of the plate for the 

same value of the parameter β. 

 

 



Научный журнал НИУ ИТМО.  
Серия «Процессы и аппараты пищевых производств»                                                                                              № 2, 2014 

 

 

D. Uniformly loaded circular plate. 
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 It should be noted that the solutions to this problem and similar problems presented in 

[17], sections 7-9, are net exact solutions, as implied in [17], but approximate “energy” 

solutions based on the deformed shape of linear-elastic plate [18]. 

 the equilibrium equation at radius r is: 

 

 

 

where  are the radial and circumferential bending moment per unit length and 

p is the uniformly distributed pressure. 

The strain rate compatibility equation is  

 

 

 

where  are the rates of change of curvature in the radial and circumferential 

directions respectively. 

 Using the “plane sections remain plane” conditions, it is easy to show (in the absence of 

membrane effects) that for a plate element of thickness H 

 

 

 where 

 

  

Equations (17) – (20) are an exact analogue of equations (1) – (5) for the rotating disc. The 

quantities Mr, , ,  correspond to  while p/2 corresponds to α. The boundary 

condition  at r=0 also carries through. The equations may thus be solved in the same 

manner. 

 For the simply-supported plate the boundary condition M=0 at the edge corresponds to 

the boundary condition for the rotating disc carrying no edge mass. For the clamped plate the 

relevant boundary condition at the edge is  or, using equation (20), Mr =  The 

solutions (see Fig. 2) have to be marched out further to the point where this condition is 

satisfied. In the case n→∞ there is a slight complication in that at the clamped boundary dMr 

/dr →∞: this difficulty is easily overcome, however. 

 The greatest stress  is readily found from th greatest value of . Fo the clamped plate, 

the greatest stress occurs at the edge, while for the simply-supported plate the greatest stress 

occurs at the centre – expect for the case n→∞, when the stress is equal to the yield stress 

everywhere. 
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E. Symmetrically stretched sheet with hole and ring reinforcement. 

 The results are taken from [16]. 

F. Thick – walled tube under internal pressure. 

 This problem was first solved by Bailey [19]. The analysis is much simplified by the fact 

that the strain rate in the axial direction is zero if the ends of the tube are closed. It is readily 

shown from the results (which are obtainable in [20]) that 

 

  

  

where a and b are the internal and external radii, respectively. When m=0 the expression 

becomes indeterminate: L`Hospital`s rule gives the perfectly plastic solution 

 

 

Calculation of dFm / dm at m=1 

 For any value of n for a given set of external loads we have a set of stresses τ throughout 

the structure which are in equilibrium with the external loads, a set of strain rates  which are 

compatible and which are related to the stresses by the material law 

 

 

  

The stress distribution is identical to that which would be obtained for the same structure made 

of non-linear elastic material 

 

                                             

  

For the structure made of the analogous elastic material, consider a small change dn in n, and 

the associated changes in  and . Differentiating equation (23 ) with respect to n: 

 

 

  

In the special case n=1: 

 

 

 

Now  represents a compatible strain distribution, and  represents a stress distribution 

in equilibrium with zero external load. Equation (25) may thus be interpreted:  and  are 

changes in strain and stress in an initially unstressed linear-elastic structure (modulus of  

elasticity = 1/B1) which is subject to a strain distribution (“thermal strain”) of . 
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Thus, if the stress distribution is known in the linear case, n=1, the rate of change of the 

stresses (and in particular of the greatest stress) with n may be determined from, essentially, a 

linear-elastic thermal stress problem, For n=1, of course,  

 

The result, as far as Fm in concerned, is independent of the magnitude of τ. It is most 

convenient to scale the stresses so that in the greatest stress has absolute value unity. Fig. 3 

shows a graph of  as a function of τ for this case. 

The analysis has been presented in terms of one-dimensional stress. The essential 

features carry through to triaxial stress systems. It should be noted that the “thermal” strains 

consist of changes in shape rather than changes in volume, as in conventional thermal stress 

analysis. 
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