Уравнение состояния и таблицы термодинамических свойств озонобезопасного хладагента R227ea

Митропов В.В.

Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий

Для хладагента R227ea приведены уравнения зависимости давления насыщения от температуры, плотности насыщенной жидкости от температуры, второго вириального коэффициента от температуры, изобарной теплоемкости от температуры и уравнение состояния в форме взаимосогласованных уравнений. в диапазоне температур от 250 К до 470 К и давлений до 30 МПа..

Ключевые слова: R227ea, давление насыщения, второй вириальный коэффициент, уравнение состояния.

Хладагент R227ea является тем из изомеров гептафторпропана, в молекуле которого единственный атом водорода связан с центральным атомом углерода. Температура кипения этого хладагента при нормальном атмосферном давлении равна -16,693 °C, т.е. он занимает промежуточное положение между хладагентами среднего и низкого давления и является перспективным для использования в чистом виде или в качестве основного компонента смесей в технике кондиционирования воздуха и тепловых насосов.

Экспериментальные исследования термодинамических свойств хладагента R227ea за исключением единичных работ, были опубликованы в течение последнего десятилетия. На рис.1 показаны интервалы параметров состояния, в которых были проведены исследования.

Для описания зависимости давления насыщения от температуры принята структура уравнения, рекомендованная Вагнером с соавторами [20].

$$\tau \ln\left(\frac{p_s}{p_{\kappa p}}\right) = B_1(1-\tau) + B_2(1-\tau)^{1.5} + B_3(1-\tau)^{2.5} + B_4(1-\tau)^4 + B_5(1-\tau)^{4.5}$$
(1)

При расчете коэффициентов уравнения (1) учитывались опытные данные по изобарной теплоемкости жидкости при низких давлениях и температурная зависимость второго вириального коэффициента. На рис.2 представлены отклонения опытных значений p_s от вычисленных по уравнению (1) со следующими коэффициентами: B_1 =-7,710567, B_2 =1,643072, B_3 =-2,802692, B_4 =2,94717, B_5 =-6,519368, где $p_{\kappa p}$ =29,22 бар

Рис.1. *р,v,T* –данные R227ea. 1 – Ши и др. [19], 2 – Груздев и др. [9], 3 – Ишмел и др. [13], 4 – Скалабрин и др. [17], 5 – Ди Никола [5], 6 – Ху и др. [10], 7 – Феделе и др.[7]

Рис.2 Относительные расхождения между вычисленными по уравнению (1) давлениями насыщения R227ea и опытными данными. 1 – Груздев и др.[9], 2 – Ху и др.[11], 3 – Робин [16], 4 – Ди Никола [5], 5 – Ванг и Дуан [21], 6 – REFPROP 7.0, 7 – REFPROP 8.0

Температурная зависимость плотности насыщенной жидкости получена в форме:

$$T_{s} = T_{\kappa p} + \sum_{i=3}^{7} A_{i} \left(1 - \frac{\rho'}{\rho_{\kappa p}} \right)^{i}$$

$$\tag{2}$$

при этом A_3 = 40,037915, A_4 = -5,974844, A_5 = -19,598832, A_6 = -9,173931, A_7 = -1,498793, $T_{\kappa p}$ = 374,9 К, $\rho_{\kappa p}$ =585 кг/м³. Расхождения между опытными и вычисленными по этому уравнению значениями плотности насыщенной жидкости

представлены на рис.3.

Рис.3. Относительные расхождения вычисленных по уравнению (2) значении плотности насыщенной жидкости R227ea и опытными данными, 1 – Лин и Дуан [14], 2 – Груздев и др. [9], 3 – Фроба и др. [8], 4 – Дефибов и Моррисон [4], 5 – Феделе и др. [7], 6 – Скалабрин и др. [17], 7 – REFPROP 7.0

Уравнение температурной зависимости второго вириального коэффициента было получено в традиционной форме разложения по степеням обратной температуры:

$$B = \sum_{i=0}^{4} \frac{b_i}{T^i} \tag{3}$$

Коэффициенты уравнения (3) для второго вириального коэффициента равны: $b_0=2,26666$, $b_1=-34,3928$, $b_2=186,565$, $b_3=-585,330$, $b_4=512,085$, выражена в сотнях кельвинов, *В* получается в см³/г. Относительные отклонения опытных величин от расчетных представлены на рис.4.

Рис 4.Относительные расхождения (*B* - B_{pacu})// B_{pacu} /100 % между значениями второго вириального коэффициента, выделенными из опытных данных и рассчитанными по уравнению (9). 1 – Дуан и др. [6], 2 – Груздев и др. [9], 3 – Ху и др. [10]

В результате обработки опытных данных по c_p^0 , представленных в работах [3, 22], получена формула, описывающая зависимость изобарной теплоемкости от температуры хладагента R227ea в состоянии идеального газа:

$$c_p^0 = \sum_{i=1} c_i T^i \tag{4}$$

где $c_1=0$, $c_2=0,423355881$, $c_3=-0,010656573$, $c_4=-0,010656573$, $c_5=-1,049523637$, $c_6=-0,560302724$, температура подставляется в К , $c_p^{\ 0}$ получается в кДж/(кг К).

Уравнение состояния для хладагента R227ea разрабатывалось в форме, рекомендованной в работе [1], которая предполагает наличие двух взаимосогласованных уравнений для области сверхкритических плотностей –

$$p = p_{s} + T \sum_{i=1}^{m} \sum_{j=0}^{R_{i}} a_{ij} \left(1 - \frac{T_{s}}{T} \right)^{l} \left(1 - \frac{\rho}{\rho_{\kappa p}} \right)^{j}$$
(5)

и для области докритических плотностей –

$$p = \sum_{j=0}^{S_0} \left[a_{0j} + T \sum_{i=1}^m a_{ij} \left(1 - \frac{T_{\kappa p}}{T} \right)^i \right] \cdot \left(1 - \frac{\rho}{\rho_{\kappa p}} \right)^j$$
(6)

Уравнение (6) может быть сведено к обычной вириальной форме.

$$\frac{p}{\rho RT} = 1 + \sum_{i=0}^{m} \sum_{j=1}^{s_{i-1}} b_{ij} \frac{\rho^{j}}{\tau^{i}}$$
(7)

где T – в 10² К; R – в (бар см³)/(г К); ρ – в г/см³; p – в бар.

Кроме массивов термических данных [5, 7, 9, 10, 13, 17, 18, 19] в аппроксимацию включалась отобранная часть экспериментальных точек из результатов исследований изобарной теплоемкости [2, 12] и скорости звука [3, 8, 9, 15].

Итоговый набор коэффициентов a_{ij} для уравнений (4) и (5) представлен ниже. Значения коэффициентов для двух зон: $a_{10}=-B_1p_{\kappa p}/T_{\kappa p}=0,600967639$, $a_{11}=-0,705971886$, $a_{12}=0,525203444$, $a_{20}=0,139610367$, $a_{21}=-1,234766082$, $a_{22}=-0,989453561$, $a_{30}=-0,042454718$, $a_{31}=0,092356439$, $a_{32}=0,072457217$.

Уравнение состояния для области докритических плотностей сверх общих содержит следующие коэффициенты: $a_{00}=p_{\kappa p}$, $a_{03}=2,695689284$, $a_{04}=-39,99933385$, $a_{06}=10,00234808$, $a_{08}=-1,91870516$, $a_{13}=-1,811793323$, $a_{14}=2,28174241$, $a_{15}=-0,954474121$, $a_{17}=0,064325833$, $a_{23}=9,829442366$, $a_{24}=-11,38585167$, $a_{26}=6,218377315$, $a_{27}=-2,577358727$, $a_{33}=-0,241746938$, $a_{35}=0,228358038$, $a_{36}=-0,108970042$; в области сверхкритических плотностей помимо общих уравнение содержит следующие коэффициенты: $a_{15}=0,324233457$, $a_{16}=0,319264603$, $a_{17}=0,047599612$, $a_{23}=-0,791594415$, $a_{24}=-0,608471662$.

Результаты сравнения опытных p,ρ,T – данных с расчетными по взаимосогласованным уравнениям состояния приводятся в табл. 1 и табл. 2. Среднеквадратические отклонения для области докритических плотностей определялись по формуле:

$$\sigma = \sqrt{\frac{\sum \left(\frac{100(p_{on} - p_{pacy})}{p_{pacy}}\right)^2}{N}},$$
(8)

где *N* – число точек, включенных в расчет.

Среднеквадратические отклонения для области сверхкритических плотностей определялись по формуле:

$$\sigma = \sqrt{\frac{\sum \left(\frac{100(\rho_{on} - \rho_{pacy})}{\rho_{pacy}}\right)^2}{N}},$$
(9)

Таблица 1

Среднеквадратические отклонения расчетных величин по различным уравнениям состояния от экспериментальных данных для области докритических плотностей

		Число	Сравнение с расчетом по уравнению состояния		
Автор	Лите-	опыт-			
	ратура	ных	по REFPROP	но стоянноя робото	
		точек	8.0	настоящая работа	
Скалабрин и др.	[17]	1800	1,74	1,85	
Ху и др.	[10]	97	0,12	0,11	
Груздев и др.	[9]	52	0,51	0,54	
Ди Никола	[5]	56	0,12	0,12	

Таблица 2

Среднеквадратические отклонения расчетных величин по различным уравнениям состояния от экспериментальных данных для области сверхкритических плотностей

		Число	Сравнение с расчетом по уравнению		
Автор	Лите-	опыт-	COC	тояния	
	ратура	ных	по REFPROP	HOOTOGHIOG POGOTO	
		точек	8.0	настоящая работа	
Скалабрин и др.	[17]	8855	3,69	3,47	
Ишмел и др.	[13]	244	0,27	0,27	
Груздев и др.	[9]	42	0,46	0,30	
Феделе и др.	[7]	300	0,04	0,04	

Фрагмент таблицы термодинамических свойств, рассчитанных по уравнению состояния, для однофазной области приводится в табл.3.

Таблица 3.

Термодинамические свойства гептафторпропана (R227ea) на линии насыщения

		на линии насыщения							
+	2					s",	<i>s</i> ',	$c_{p}'',$	c_p ',
ι, °C	рs, МПа	ρ",	ρ',	h",	h',	кДж/	кДж/	кДж/	кДж/
C	IVIIIa	$\kappa\Gamma/M^3$	кг/м ³	кДж/кг	кДж/кг	(кг К)	(кг К)	(кг К)	(кг К)
-30	0,5416	4,6951	1591,2	304,90	167,57	1,4394	0,8746	0,717	1,051
-20	0,8648	7,2923	1557,5	311,46	178,18	1,4438	0,9173	0,739	1,069
-10	1,3242	10,913	1522,6	318,02	188,98	1,4494	0,9591	0,763	1,090
0	1,9553	15,829	1486,3	324,55	200,00	1,4560	1,0000	0,789	1,112
10	2,7968	22,366	1448,4	331,00	211,25	1,4632	1,0403	0,817	1,136
20	3,8912	30,922	1408,5	337,34	222,76	1,4708	1,0799	0,848	1,164
30	5,2838	42,008	1366,2	343,51	234,56	1,4786	1,1192	0,884	1,195
40	7,0232	56,300	1320,8	349,45	246,69	1,4863	1,1581	0,926	1,233
50	9,1617	74,751	1271,5	355,06	259,18	1,4936	1,1969	0,979	1,278
60	11,7561	98,794	1216,9	360,20	272,12	1,5000	1,2356	1,052	1,336
70	14,8699	130,79	1154,7	364,64	285,61	1,5051	1,2748	1,163	1,421
80	18,5775	175,22	1080,3	367,99	299,89	1,5076	1,3148	1,366	1,569
90	363,15	22,9721	243,03	981,79	369,31	53,72	1,5054	1,3574	1,880
100	373,15	28,1970	394,39	790,59	363,81	27,16	1,4858	1,4130	7,415

Список литературы

- 1. Клецкий А.В. Исследования и описание взаимосогласованными уравнениями термодинамических свойств и вязкости холодильных агентов. Диссерт. на соиск. уч. степени докт. техн. наук. Л.: ЛТИХП, 1978. 356с.
- 2. Baginskii1 A. V. and Stankus S. V., Thermodynamic and Transport Properties of Liquid HFC-227ea// Int. J. Thermophys., 2003, 24, 953-961

- 3. Benedetto G., Gavioso R. M., Spagnolo R., Grigiante M., and Scalabrin G., Vapor-Phase Helmholtz Equation for HFC-227ea from Speed-of-Sound Measurement// Int. J. Thermophys., 2001, 22, 1073-1088
- Defibaugh, D. R.; Moldover, M. R. Compressed and Saturated Liquid Densities for 18 Halogenated Organic Compounds// J.Chem. Eng. Data, 1997, 42, 160-168.
- 5. Di Nicola, G. P-V-T Behavior of 1,1,1,2,3,3,3-Heptafluoropropane (R227ea)// J. Chem. Eng. Data, 2003, 48, 1332-1336.
- 6. Duan, Y. Y.; Shi, L.; Zhu, M. S.; Han, L. Z.; Lei, X. Thermodynamic Properties of 1,1,1,2,3,3,3-Heptafluoropropane// Int. J. Thermophys., 2001, 22, 1463-1474.
- Fedele L., Pernechele F., Bobbo S., and Scattolini M. Compressed Liquid Density Measurements for 1,1,1,2,3,3,3-Heptafluoropropane (R227ea)// J. Chem. Eng. Data, 2007, 52, 1955-1959
- 8. Fröba, A. P.; Botero, C.; Leipertz, A. Thermal Diffusivity, Sound Speed, Viscosity, and Surface Tension of R227ea (1,1,1,2,3,3,3-Heptafluoropropane)// Int. J. Thermophys. 2006, 27, 1609-1625
- 9. Gruzdev V. A., Khairulin R. A., Komarov S. G., Stankus S. V. Thermodynamic Properties of HFC-227ea// Int. J. Thermophys., 2002, 23, 809-824.
- 10. Hu P., Chen Z. S., Cheng W. L. Gaseous PVT Behavior of 1,1,1,2,3,3,3-Heptafluoropropane// J. Chem. Eng. Data, 2003, 48, 337-340.
- Hu P., Chen Z. S., Cheng, W. L. Vapor Pressure Measurements of 1,1,1,2,3,3,3-Heptafluoropropane from 233.15 to 375.15 K// J.Chem. Eng. Data, 2002, 47, 20-22.
- 12. Hykrda R., Coxam J.Y., and Majer Experimental determination of isobaric heat capacities of R227 (CF₃CHFCF₃) from 223 to 283 K at pressures up to 20 MPa// Int. J. Thermophys., 2004, Vol. 25, No6, p 1677-1694
- Ihmels E. C., Horstmann S., Fischer K.; Scalabrin, G.; Gmehling, J. Compressed Liquid and Supercritical Densities of 1,1,1,2,3,3,3- Heptafluoropropane (R227ea)// Int. J. Thermophys. 2002, 6, 1572-1585.
- 14. Lin H. and Duan Y. Surface Tension of 1,1,1-Trifluoroethane (HFC-1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea),Their Binary Mixture HFC-143a/227ea// Int. J. Thermophys., 2003 Vol. 24, No. 6,
- 15. Pires P. F., Esperanca J. M. S. S., and Guedes H. J. R. Ultrasonic Speed of Sound and Derived Thermodynamic Properties of Liquid 1,1,1,2,3,3,3-Heptafluoropropane (HFC227ea) from 248 K to333 K and Pressures up to 65 MPa// J. Chem. Eng. Data 2000, 45, 496-501
- Robin M. L. Thermophysical properties of HFC-227ea// Proceeding of 1994 Int CFC&Halon Alternatives Conf., Washington DC, USA, 1994, 105-113
- 17. Scalabrin, G., Bobbo, S.; Chouai, A. (P,F,T) Behavior of 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) at Temperatures between 253 K and 403 K and Pressures up to 20 MPa// J. Chem. Eng. Data 2002, 47, 258-261.
- 18. Shi, L., Duan, Y. Y.; Zhu, M. S., Han, L. Z.; Lei, X. Vapor Pressure of 1,1,1,2,3,3,3-Heptafluoropropane// Fluid Phase Equilib., 1999, 163, 109-117.

- 19. Shi, L., Duan, Y. Y., Zhu, M.-S., Han, L.-Z. Gaseous Pressure-Volume-Temperature Properties of 1,1,1,2,3,3,3-Heptafluoropropane// J. Chem. Eng. Data, 1999, 44, 1402-1408.
- 20. Wagner, W. Eine mathematisch statistishe Methode zum Aufstellen thermodynamischer Gleichungen gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe, Fortschr. Ber. VDI, Dusseldorf, VDI– Verlag 3 (1974).
- 21. Wang, Z. W.; Duan, Y. Y. Vapor Pressures of 1,1,1,3,3-Pentafluoropropane (HFC-245fa) and 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea)// J. Chem. Eng. Data, 2004, 49, 1581-1585.
- Zhang, C.; Duan, Y. Y.; Shi, L.; Zhu, M. S.; Han, L. Z. Speed of Sound, Ideal-Gas Heat Capacity at Constant Pressure, and Second Virial Coefficients of HFC-227ea// Fluid Phase Equilib. 2001, 178, 73-85.