HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOOM I, MEXAHUKI 1 OMTUKN

° mapT-anpesnb 2023 Tom 23 Ne 2 http://ntvifmo.ru/  wavuko-texnuuEckum BECTHUK
IIITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pMA““““HMX IEXH“I“"““' MEXAH“K“ “ m"“m
March-April 2023 Vol. 23 No 2 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2023-23-2-374-381

An intelligent shell game optimization based energy consumption analytics model
for smart metering data
Ramalingam Saravanan!™J, Arulnanthisivam Swaminathan2, Sankaralingam Balaji3

1.3 Sri Manakula Vinayagar Engineering College, Puducherry, 605107, India
2 Panimalar Engineering College, Chennai, 600123, India

I saravanan@smvec.ac.in™, https://orcid.org/0000-0003-3503-1133
2 swamisivam19@gmail.com, https://orcid.org/0000-0001-7672-1339
3 balaji@smvec.ac.in, https://orcid.org/0000-0002-9013-9801

Abstract

Smart metering is a hot research topic and has gained significant attention since the electromechanical metering is not
reliable and requires more energy and time. All the existing methods are focused only on how to deal with data rather
than how to do efficiently. Prediction of electricity consumption is essential to gain intelligence to the smart gird.
Precise electricity prediction allows a service provided in resource planning and also controlling actions for the demand
and supply balancing. The users are beneficial from the smart metering solution by effective interpretation of their
energy utilization, and labelling them to efficiently handle the utilization cost. With this motivation, the paper presents
intelligent energy consumption analytics using smart metering data (ECA-SMD) model to determine the utilization of
energy. The presented ECA-SMD model involves three major processes namely data pre-processing, feature extraction,
classification, and parameter optimization. The presented ECA-SMD model uses Extreme Learning Machine (ELM)
based classification to determine the optimum class labels. Besides, shell game optimization (SGO) algorithm is applied
for tuning the parameters involved in the ELM and boosts the classification efficiency. The efficacy of the ECA-SMD
model is validated using an extensive set of smart metering data and the results are investigated based on accuracy and
mean square error (MSE). The proposed model exhibited supremacy with the maximum accuracy of 65.917 % and
minimum MSE of 0.096.
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AHHOTAIUA

WuteriekTyalibHbIe H3MEPEHUS TIPUBJICKAIOT K ceOe Bee OOMBIIIOe BHUMAHKE H3-32 HEHAICKHOCTH SIICKTPOMEXaHHICCKIX
U3MepeHuii, 00JbIINX 3aTpar Tpyna U BpeMeHH. CyIIecTBYIOMINE METO/bI IPOTHO3UPOBAHUS COCPEIOTOYCHBI HA
paboTe ¢ TaHHBIMHU M HE YAENAIOT JOJDKHOIO BHUMAHHUA IMOJyYEHHBIM pe3ynbraraM. TouyHoe MpOrHO3MpOBaHUE
MOTPEOIeHUS EKTPOIHEPTUN MO3BOISAET MPEAOCTABIATH YCIYyTH MO MIAHHUPOBAHUIO PECYPCOB, KOHTPOIIO
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JefcTBUS 10 OallaHCHPOBAHMIO CIIpoca M mpejiokeHus. [lonp30BaTeNn MOMydYalOT BBITOAY MPH MPUMEHEHHH
UHTEJUICKTYaJIbHOI'O y4€Ta 3a CUCT 3(1)(1)6KTHBHOI>’I UHTEPIIPpETAIUN PE3YJIBTATOB UCIIOJIB30BaHUS SHEPIUU U 6)'[31"0)13])5{
SKOHOMHYHOMY) YIIPABJICHHUIO 3aTpaTaMy Ha 3JIEKTPOIHEpruo. B pabore npescrapieHa HHTEIEKTyalbHask aHATUTHKA
SHEPromoTpeOICHNs ¢ MPUMEHEHNEM MOJENHN JAaHHBIX HHTelIeKkTyansHoro yaera ECA-SMD mist onpenenenus
HCIOJIb30BaHMs YHEPTUU. Mojienb BKIIIOYAeT NpPEeABAPUTEIbHYI0 00pabOTKy TaHHBIX, H3BJICYCHHUE TPU3HAKOB,
KITacCU(UKAIIMIO U ONTUMHU3ALMIO [TapaMeTpoB. Vcronp30BaHa Kiaccu(uKanus Ha OCHOBE MAIllHH KCTPEMAIbHOTO
obyuenust (Extreme Learning Machine, ELM) ju1st onpezneneHust ONTUMaIbHBIX METOK KilaccoB. [IprMeneH anroputm
ontumu3anuu Shell Game Optimization JuIs HacTpOHKH mapaMeTpoB, ydacTByromux B ELM n nossimeHus
s dexrnBHOCTH Kinaccudukanun. Pabotocrocoonocts Moaen ECA-SMD npoBepeHa ¢ HCoabp30BaHHEM 0OLINPHOTO
Habopa JTaHHBIX UHTEJUIEKTYAJIbHBIX M3MepeHuid. [IpeaoxeHHas Mo/esb MoKa3aia MaKCHMaJIbHYIO TOYHOCTB 65,9 %
U cpeqHekBaaparnuHoe oTkioHeHue 0,096.

KiroueBble ci10Ba
MOTPeOJICHNE JIEKTPOIHEPIHHU, IIPOTHOZUPYIOIIAsk MOJICIb, aHAIHU3 JaHHBIX, HHTCIUICKTYAJIbHbIH yUeT, MalllMHHOE
oOy4eHme

Ccepuaka s nutupoBanus: Capasanad P., CBamunaran A., bamamku C. Mozenb aHaTUTHKH HEPTONOTPEOIeHIS
Ha OCHOBE MHTEIIEKTyanbHOI 06onoukn Game Optimization s JaHHBIX HHTEJUIEKTYaJbHOTO yuera // HayduHo-
TEeXHUYECKHH BECTHUK MH()OPMAMOHHBIX TEXHOJIOTHH, MexaHuky u ontuku. 2023. T. 23, Ne 2. C. 374-381 (na anr.

a3.). doi: 10.17586/2226-1494-2023-23-2-374-381

Introduction

Conventional power grids are being replaced by smart
grids which include the use of solar energy and wind
energy, and the smart metring is essential to collect the
data efficiently. In previous years, smart meters have been
rapidly utilized all over the world. At the end of 2018,
nearby 86 (UK) and 11 (US) million smart meters have
been installed by small and large suppliers. The major aim
of smart metering in residential sectors is to inspire the
user for consuming lesser energy with increased awareness
regarding their consumption level [1]. The smart meter
provides data on cost and sum of energy utilization in
real world for both consumers and suppliers. This data
with incentive programs and demand response will assist
them to reduce their energy utilization on peak times and
schedule its appliances based on electricity prices [2]. High
resolution data created by smart meters, alternatively, give
suppliers various managing tasks like power loss detection
and power quality monitoring. Furthermore, it unlocks
several doors of chances in electricity load analyses like
load predicting with higher accurateness at low aggregation
levels [3, 4]. The important benefits of the smart metering
are automated meter reading, dynamic pricing updates, and
carly alert of blackouts, efficient energy usage and savings.
The load control of smart meters helps the consumers and
distributors to disable the meters when the price gets higher
which saves the energy when there is scarcity. The data
generated from the smart meters are helpful in market
demands, abruption of changes, load forecasting through
data analytics.

Electrical load predicting is the forecast of the load
demand that an electricity user would have later [5]. Load
prediction assists suppliers to balance demand and supply
also in ensuring the consistency of power grids during
power insufficiency. Load predictions are also significant
to electricity traders for balancing their electricity sales and
purchase [6]. Load predicting is implemented in extensive
time-horizon aims at distinct targets: short term load
prediction (seconds to one day in advance) for adjusting
demand and supply; medium term load forecast (one day to
one year in advance) for planning maintenance and outage;
and long term load prediction (over a year in advance) for

planning the growth of power framework. The predicting
process becomes very difficult for low aggregation levels,
for example at building level, since several fluctuating
factors affect a building energy consumption with differing
degrees, such as building properties, weather variables,
Ventilating, Heating, and Air Conditioning (HAVC)
services and utilization behavior of occupiers [7, 8].
Additionally, several researchers have profited from smart
metering information for developing innovative modules to
load predicting at separate building levels. The approaches
for forecasting building energy consumption are commonly
categorized into 2 classes: data driven and engineering
(physical) methods. Engineering approach utilizes scientific
equations for presenting the physical modules and thermal
efficacy of buildings. Nowever, they require higher details
regarding distinct variables of the buildings that aren’t often
presented. Furthermore, a higher level of skill is needed
for performing elaborate and expensive computations.
Alternatively, data driven methods does not require this
complete information regarding the inspired building and
rather learns from historical/real world data. This approach
is categorized into 2 classes: Artificial Intellegence (Al)
based and statistical methods [9, 10].

Statistical approaches utilize historical data as a goal to
correlate energy consumption with significant parameters
as input. Thus, a large number of historical data with higher
quality performs a major part in the efficiency of statistical
modules. Conventional linear statistical modules, like
Conditional demand analysis, Autoregressive Integrated
Moving Average, Gaussian mixture models (GMM), Auto
Autoregressive Moving Average, and Regression models,
have endured the standard for time sequence forecast
with an extensive utilization in several applications [11].
Though it is easier for utilizing statistical methods, the
fundamental assumptions of this module are depending
upon time sequence that is deliberated linear and thus
follows a particularly known distribution of statistics.
Several Machine Learning (ML) modules were established
to conquer these restrictions. The modules are depending
upon Support Vector Machines (SVM), and Classification
and Regression Trees, which are between the effective ML
methods utilized in time sequence predicting and energy
application.
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In previous years, several scientists have examined the
application of Al based methods in predicting challenges.
Amongst Al based methods, Artificial Neural Networks
(ANNs) with distinct structures have been extensively
utilized in the load predicting field [12]. ANN is equivalent
to statistical approaches that utilize historical data for
building a module. However, hidden layer structure and
learning capability offer numerous benefits on statistical
and traditional ML methods for predicting time sequence.
They are deliberated data driven and self-adaptive
approaches that could take subtle and functional patterns
via a trained procedure on historical records of data, when
the fundamental relationships among input and output
parameters are unknown/complex. However, the neural
networks with shallow structures have the drawbacks of
considering entire inputs and outputs that are autonomous
of one another, while handling consecutive data [13, 14].

This paper presents intelligent Energy Consumption
Analytics using Smart Metering Data (ECA-SMD) model
to determine the utilization of energy. The presented ECA-
SMD model involves three major processes, namely, data
pre-processing, feature extraction, classification, and
parameter optimization. The presented ECA-SMD model
uses Extreme Learning Machine (ELM) based classification
to determine the optimum class labels. Besides, Shell
Game Optimization (SGO) algorithm is applied for tuning
the parameters involved in the ELM and it boosts the
classification efficiency. The efficacy of the ECA-SMD
model is validated using an extensive set of smart metering
data and the results are investigated based on accuracy and
Mean Square Error (MSE).

The Proposed ECA-SMD Model

The ECA-SMD model encompasses different processes
as shown in Fig. 1, such as data pre-processing, feature
extraction, ELM based prediction, and SGO based
parameter optimization. Initially, the smart metering data is
pre-processed to enhance the quality of the data. Followed
by, the features in the pre-processed data are extracted and
are then fed into the ELM model to predict the electricity
utilization. In order to further improve the predictive

Input: Training Dataset Input: Testing Data

I |

Preprocessing Data Preprocessing
Extract the Features Extract the Features

I I

Split into Training, Testing Trained Model
and Validation Ratio %

l Evaluate Metrics
MSE

Classify the Data
I
Fig. 1. Working process of ECA-SMD model

Accuracy

performance of the ELM model, the SGO algorithm is
applied to optimally alter the parameters involved in the
ELM model.

Data Pre-processing

The pre-processing phase is the early procedure that is
assumed to be major procedure of the energy consumption
analyses where the dataset is loaded. The dataset used in
the work is smart meter dataset acquired from Kaggle!
which contains the readings of 5567 households. The
dataset contains hourly household energy consumption
that is expected and is kept in the local database to compare
the real measured data. The Data pre-processing phase is
consisting of several procedures, such as data integration,
data transformation, data cleaning, and data reduction. Data
cleansing is a procedure of finding the missing variables
and it fills them with precise values. The processed data
is summarized and executed standardization function for
reducing the redundant values in the datasets. The data
kept in the datasets should be dependent on one another
with essential logic between these data. With the removal
of redundant data, the data reduction procedure is executed
thus to raise the speediness of the data process while
relating the trained dataset with the test data.

Feature Extraction

It is the next procedure of defining the accuracy of
matching the test data to the trained data. The measured
value of voltage, global active reactive powers, power
intensity was assumed to be a test value and is related to
standard deviation. The low standard deviation produces
higher level of accuracy in the feature extraction stage.
The time sequence data of the reactive powers and global
active have been related to the extracted features. The
relation coefficient C(¢) between the test and trained data
is defined by

i(xn 7-)671

n=1

Tons| "

where x,, is the training data and X,, is testing data.

Eq. (1) represents that the relation coefficient produces
the corresponding factor relating the test and trained values
of global reactive power, power intensity global active
power. The Standard Deviation (SD) for the test and
trained values has been as

@) =

SD(o) = —z(x;\; by @)

where x; is a value in the data set.

Eq. (2) denotes the scientific form of defining the SD
of the prediction value, and it is based on overall electrical
appliances in the test residential building (V) and mean
of electrical appliances in the target residential building
(p). The approach used in the feature extraction process
is Pearson correlation coefficient-based feature selection
method. With the help of ranking function, the features

I Smart meter data from London area. Available at: https://
www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
(accessed 18.10.2022).
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are ranked based on the correlation among the features.
Then the optimal features are selected by eliminating the
irrelevant features in the dataset based on the rank obtained
by the features. The selection of the relevant feature
purely depends on the heat consumption and the outside
temperatures of the current and previous 21 days.

ELM based Prediction

In order to perform prediction, mathematical model
that accepts input and output should be modeled for energy
consumption. It is necessary to study the relationship
between the input parameters that affect consumption
and output values providing the consumption. Next to the
feature extraction process, the Extreme Learning Machine
(ELM) model is applied to determine the predictive value
of the input data. Huang et al. [15] present a novel Neural
Network (NN) method named ELM. The ELM topology is
a generalized Single hidden Layer Feedforward Network
(SLFN) where the input layer weight is set arbitrarily, and
the hidden layer weight should be changed. Therefore,
in computation terms, ELM is a light weight method. As
the trained method isn’t a gradient descent-based one, it
enables the utilization of diverse activation functions like
sinusoid, sigmoid, Gaussian, logistic, identity, Rectifier
Linear Unit, Radial Basis Function between another’s.

They assumed a regular SLFN with m output node, n
input node, and L hidden node. Every hidden node has a
similar activation function 4. They assume a time sequence
{x;} ez and, moreover, N random pairs (xj, tj), whereas

X; = D0 X5 s Xl T = D ot s Xy 1T E R
denotes input vector and where the equivalent output
targeted vector #; for j = 1, ..., N is denoted as t; =
=[t;1, ;)T € Rmand also the scalar output of i-th hidden
node is denoted as:

hwx; +b) ER,i=1,..,Lj=1,...N. (3

Eq. (3) denotes the hidden node L, where w; = [w; , ...,
w; ] € R” denotes weight vector related to the connection
among #n input nodes of input layer and i-th hidden node
with b, as bias of the hidden node that is:

W, ,, = weight associated to the connection between
the v-th input layer node and i-th inner layer node. (4)

Eq. (4) denotes weight vector w, where v=1,2, ..., n
and i =1, ..., L. The k-th element of output of the SLFN
for input x; is assumed as [16]:

L
Op(xj) = i=zl Bi,ph(wixj + bi)a (5)

where p=1,...,m,j=1, ..., N, b; € R indicates bias of
i-th hidden node, and

B, = weight associated to the connection between
the i-th input layer node and p-th inner layer node. (6)

The output of j-th input vector by the structure of ELM
module denoted in eq. (5) is written in matrix form and it
is represented as:

0=0(x))
01(xy) 0p(x1)
0;(xy) Op(xy)
h(wy ey +by) h(wgx, + by)
= : : x (7)
h(wy|xy + by) h(wpxy + bp)
HEH(WZ',){/',bi)
Bii - Bim
x| ol
Bri o Bim
B

The matrix H represents hidden layer output matrix
of the NN (as shown in eq. (7)), matrix B is explained
in eq. (7) also. For training, SLFN should detect, for
a presented set of vectors xy, ..., xp, the certain vector
weights w; = =[w, ;, ..., w, JTand B, = [By . -, By IT.
The scalar bias b;, resolves the succeeding minimization
problem:

min |[HB - T||? =
wibiBiy
m N L

= min ¥ > (X B hwx;+b)-,)%  (8)

wibBiy p=1j=1 i=1

where ||.|| denotes typical Frobenius matrix norm,
T = [t; JN*m is targeted matrix. Afterward, the variables
w;, B;,, and b;, that mentioned in (8), are established in the
trained stage, they remain fixed for entire run of new vectors
X;. The succeeding results ensure that in the case L =N
the problem (8) is precisely resolved “with likelihood one”.

Parameter Optimization

Finally, the parameters involved in the ELM model
are optimally selected using the SGO algorithm in order
to improve the efficiency of the ELM model. The shell
game is inspired for inventing a novel optimization
method named SGO. Thus, the succeeding assumptions
are deliberated:

— in this game, an individual is deliberated as game
operator;

— the 3 shells and 1 ball are presented to the operator;

— every player has only 2 chances for guessing the
accurate shell.

It can be mathematically defined as follows. Here, a
group of N individuals is considered as the game player
[17]. In equation below, the location ‘d’ of player ‘I’ is
given by x4.

X;=(x1, ..

; XA x . 9

In the eq. (9), X; denotes arbitrary value for problem
parameter. Depending upon X;, the value of Fitness
Function (FF) is calculated for every player.

Once estimating the FF values for every player, the
game operators select 3 shells in which all the shells are
interrelated to the location of an optimum player and 2
other shells are selected arbitrarily using
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shell, = ball = X},

game’s operator: { shelly =X, ,
shelly = X,

(10)

where, X}, denotes location of minimum (in minimization
problem) or maximum (in maximization problem) of
fitness; X}, and X}, indicate position of 2 members of the
population; &y and k, denote arbitrary numbers among 1 to
N that is selected arbitrarily. Once estimating the FF and
finding the shell for every player, accuracy and intelligence
of the player must be calculated in this phase. Every player
guesses the shell depending on whether each player is
determined based on fitness accuracy and intelligence
normalized value using.

ﬁ li _ﬁt()(worst)
g[(ﬁtj _ﬁt(/\/worst)]’

Al. =

1

(1)

where AI; denotes accuracy and intelligence of player i and
Xvors: TEPresents location of minimum (in maximization
problem) or maximum (in minimization problem) of fitness.

Here, the player is prepared for guessing the ball.
Assuming that the game is played with 3 shells and every
player has 2 opportunities, there are 3 states of guess for
every player. In initial state, the initial guess might be right
and the position of the ball would be identified. In next
state, the player later an incorrect guess in the initial choice
might guess the ball position in the next time. Lastly, in
the third state, both guesses of players might be incorrect
and therefore the player was ineffective to identify the ball
position. The guess vector detailed by G, is inspired using
for every player the following equation:

statel: [1 0 0], at first

G (x) ={ state2: { [0.50.5 O], at second. .
0.500.5

state3: [0 0.5 0.5], else

The probability of choosing one of the states for shell
selection is simulated by

(12)

statel: ifAl;> ry
state = state2: ifAl;>rg »

(13)

state3 = else

where r,; denotes probability of right guess at the initial
choice and r,, represents probability of accurate guess at
the next time. Lastly, X; vector that is considered as the
position of every member of population is upgraded based
on equations

dxi(,jball = rl(ba” - xid)State(l D (14)
dx{perr, = ra(shelly — xd)sign(fit; — fitgpey )state(1,2) (15)
dx{ihells = r3y(shellsd — x)sign(fit; — fit ey, )state(1,3) - (16)
(17)

_ d d d
X = xd + dxpay + dXghert, + AXsherrys
where 7; indicates arbitrary value in the range of zero and
one, dxfba,,, dxfshellz, and abc,fls,,e”3 denotes displacement of

dimension ‘d’ of player ‘i’ according to shell,, shell,, and
shells.

The steps of SGO is generalized by:

Step 1: Arbitrary creation of early population by eq. (9)

Step 2: Evaluating the fitness value of agents

Step 3: Choice of i-th member

Step 4: Choosing 3 shells by eq. (10)

Step 5: Estimation of accuracy and intelligence (A7)
by eq. (11)

Step 6: Determining the state of guess by eqs. (12) and
(13)

Step 7: Choice of d-th dimension of i-th member

Step 8: Evaluating dxfba,,, dx,-‘fshel[z, and dx,-‘,";he,,3 using
egs. (14)—(16)

Step 9: Upgrading position of d-th dimension of i-th
member by eq. (17)

Step 10: When each dimension of i-th member are
upgraded, go to Step 11, otherwise return Step 7

Step 11: When each member is upgraded, go to Step 12,
otherwise return Step 3

Step 12: When the end criteria are recognized, go to
Step 13, otherwise return Step 2

Step 13: Print the optimum solution.

Performance Validation

This section validates the performance of the ECA-
SMD model with other existing methods such as ANN
and SVM. The results are examined in terms of MSE
and accuracy. For improved predictive results, the value
of accuracy should be maximum and MSE value should
be minimum. Table 1 provides the comparative results
analysis of the ECA-SMD model in terms of accuracy and
MSE. The dataset is processed and aggregated in to hourly
data. We used 3 months data of households for prediction.
The forecasting is done using the proposed model and the
performance is evaluated by comparing the proposed model
with other models. The performance metrics used in the
work is MSE, and its accuracy is shown in Table 1.

An accuracy analysis of the ECA-SMD model is made
with the existing methods in Fig. 2. The figure showcased
that the ANN model had shown poor performance and
resulted in a lower accuracy value. At the same time, the
SVM model demonstrated slightly enhanced outcome over
the ANN but not higher than the proposed ECA-SMD
model. For instance, at T; Hour, the proposed ECA-SMD
model has attained effective outcome with higher accuracy
of 73 %, whereas the ANN and SVM models have achieved
lower accuracy of 67 % and 70 %, respectively. In addition,
at T, Hour, the proposed ECA-SMD model has attained
effective outcome with higher accuracy of 71 %, whereas
the ANN and SVM models have achieved lower accuracy
of 69 % and 57 %, respectively. Also, at Tg Hour, the
proposed ECA-SMD model has attained effective outcome
with higher accuracy of 71 %, whereas the ANN and SVM
models have achieved lower accuracy of 66 % and 61 %,
respectively. Additionally, at T, Hour, the proposed ECA-
SMD model has attained effective outcome with higher
accuracy of 59 %, whereas the ANN and SVM models have
achieved lower accuracy of 57 % and 52 %, respectively.
Besides, at T4 Hour, the proposed ECA-SMD model has
attained effective outcome with higher accuracy of 63 %,
whereas the ANN and SVM models have achieved lower
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Table 1. Result Analysis of Existing with Proposed ECA-SMD Model in terms of MSE and Accuracy

ANN SVM ECA-SMD
Hour Accuracy, % MSE Accuracy, % MSE Accuracy, % MSE
T, 67 0.10 70 0.08 73 0.06
T, 59 0.11 59 0.12 62 0.10
T; 66 0.10 58 0.12 71 0.09
T, 69 0.09 57 0.12 71 0.08
Ts 66 0.10 58 0.12 68 0.09
Te 63 0.10 58 0.11 68 0.09
T, 60 0.11 59 0.11 61 0.10
Ty 66 0.10 61 0.11 71 0.09
Ty 66 0.10 60 0.12 67 0.10
To 61 0.11 59 0.12 64 0.10
Th 62 0.11 57 0.12 66 0.11
T, 57 0.12 52 0.12 59 0.10
Ty 59 0.12 55 0.12 62 0.12
T4 57 0.12 60 0.11 65 0.10
Ts 61 0.12 56 0.13 63 0.10
Tie 62 0.12 60 0.12 63 0.10
T7 60 0.11 59 0.12 65 0.10
Tig 67 0.10 60 0.11 68 0.09
T 62 0.12 68 0.11 70 0.11
T 59 0.12 62 0.11 65 0.11
Ty 66 0.11 63 0.10 68 0.09
T, 58 0.12 61 0.10 65 0.08
Ty 57 0.12 60 0.11 62 0.10
Toy 61 0.11 61 0.13 65 0.10
Avg. 62.130 0.110 59.708 0.114 65.917 0.096

accuracy of 62 % and 60 %, respectively. Moreover, at
T,y Hour, the proposed ECA-SMD model has attained
effective outcome with higher accuracy of 65 %, whereas
the ANN and SVM models have achieved lower accuracy
of 59 % and 62 %, respectively. Furthermore, at T,, Hour,
the proposed ECA-SMD model has attained effective
outcome with higher accuracy of 65 %, whereas the ANN

\\\\\\\\\\\\\\\\\\\\\\\\

Accuracy, %

11 13 15 17 1921 23
Time, hr

1 3 5 7 9

Fig. 2. Result analysis of ECA-SMD model in terms of
accuracy

and SVM models have achieved lower accuracy of 61 %
and 61 %, respectively.

A brief MSE analysis of the ECA-SMD model takes
place with the existing techniques in Fig. 3. The figure
depicted that the ANN and SVM models have failed to
outperform the proposed ECA-SMD model which has
achieved least MSE values. For instance, at T; Hour,

EEANN mESVM EEECA-SMD |
0.12+
0 0.1
n
=
0‘08
0.06
1 3 5 7 9 11 13 15 17 19 21 23
Time, hr

Fig. 3. Result analysis of ECA-SMD model interms of MSE
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Fig. 4. Average accuracy analysis (a) and MSE (b) of ECA-SMD model

a minimal MSE of 0.06 has been accomplished by the
ECA-SMD model, whereas a maximum MSE of 0.10 and
0.08 have been gained by the ANN and SVM models. In
the meantime, at T, Hour, a minimal MSE of 0.08 has
been accomplished by the ECA-SMD model, whereas
a maximum MSE of 0.09 and 0.12 have been gained by
the ANN and SVM models. At the same time, at Tg Hour,
a minimal MSE of 0.09 has been accomplished by the
ECA-SMD model, whereas a maximum MSE of 0.10 and
0.11 have been gained by the ANN and SVM models.
Meanwhile, at T;, Hour, a minimal MSE of 0.10 has
been accomplished by the ECA-SMD model, whereas
a maximum MSE of 0.12 and 0.12 have been gained by
the ANN and SVM models. In line with, at T;c Hour,
a minimal MSE of 0.10 has been accomplished by the
ECA-SMD model, whereas a maximum MSE of 0.12 and
0.12 have been gained by the ANN and SVM models.
Along with that, at T,, Hour, a minimal MSE of 0.11 has
been accomplished by the ECA-SMD model, whereas a
maximum MSE of 0.12 and 0.11 have been gained by the
ANN and SVM models. Simultaneously, at T,, Hour, a
minimal MSE of 0.10 has been accomplished by the ECA-
SMD model, whereas a maximum MSE of 0.11 and 0.13
have been gained by the ANN and SVM models.

Fig. 4, a portrays the average accuracy analysis of the
ECA-SMD model with the existing ANN and SVM models.
From the figure, it is depicted that the SVM model has
achieved least performance over the other methods with the
reduced average accuracy of 59.708 %, whereas the ANN
model has demonstrated slightly enhanced performance
with an average accuracy of 62.13 %. But the proposed
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