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Abstract

Motion estimation plays a crucial role in video coding; the Adaptive Rood Pattern Search (ARPS) algorithm is a well
known fast motion estimation algorithm. However, ARPS has certain limitations, such as the lack of an accurate starting
motion vector, a fixed Zero Motion Prejudgment (ZMP) threshold unsuitable for fast motion video sequences, and the
repetitive use of a Unit Rood Pattern (URP) resulting in increased computational complexity. To address these issues,
this paper proposes a novel algorithm called Efficient Adaptive Rood Pattern Search (EARPS). EARPS overcomes
these limitations by employing the Full Search algorithm to obtain optimal motion vectors for the first column in each
frame, adopting a dynamic ZMP threshold that adapts to varying motion speeds in video sequences and utilizing URP
only once to reduce computational overhead. The performance of the new proposed EARPS algorithm is evaluated and
compared with that of ARPS algorithm using various video sequences with different motion speeds. The number of
searching points and Peak Signal-to-Noise Ratio (PSNR) are used to quantify computing complexity and accuracy. The
experimental findings show that EARPS surpasses ARPS in terms of computing complexity while retaining a decent
degree of PSNR accuracy. The proposed EARPS motion estimation algorithm main contribution is to achieve high speed
with reasonable accuracy, regardless of the type of motion speed in the video frames. The EARPS algorithm offers a
substantial advancement over ARPS, delivering a more efficient motion estimation method with broader applicability in
video processing. It represents a significant contribution to the development of effective motion estimation algorithms.
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AHHOTALUA

O1ieHKa ABIKEHUS HTPACT PEIIAFONIYI0 POJIb IPU KOAUPOBAHUH BHICO. ATANTHBHBIA aJrOPUTM IA0IOHHOTO TIOMCKA
(Adaptive Rood Pattern Search, ARPS) sBnsercs u3BecTHBIM anropuTMOM OBICTPOI OLEHKH ABMOKeHHMs. [Ipn 3ToM
ARPS umeer cienyromue orpaHUYeHUs: OTCYTCTBHE TOYHOTO HAYalbHOTO BEKTOPA JABHIKCHUS; (PUKCUPOBAHHBIN
MOPOT MPEABAPUTENLHOTO CYXKIACHUS 0 HyleBoM JBMKeHHU (Zero Motion Prejudgment, ZMP), Hemoaxoasuii st
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A new efficient adaptive rood pattern search motion estimation algorithm

BHUJICOTIOCIICIOBATENLHOCTEH ¢ OBICTPBIM IBIDKCHHEM; TIOBTOPSFOIICECS UCTIONB30BAHUE 11A0JI0HA SAMHIUIHOTO JIBHIKCHHS
(Unit Rood Pattern, URP), uTo NpUBOAUT K YBEIMYCHHUIO BBIYUCIUTEIBHON CIOXKHOCTH. J{JIs1 pelieHust TaHHbIX
OrpaHUYCHUI NPEUIOKeH HOBBIM anropuT™ moj Ha3zBaHueM «I(GEKTHBHBINA aTanTUBHBINA aITOPUTM I1a0IOHHOTO
noucka» (Efficient Adaptive Rood Pattern Search, EARPS). B ocroBe EARPS nexuT aaroput™ mosHOTro MoucKa,
KOTOPBIH TTOTyYaeT ONTUMATbHBIC BEKTOPHI ABMKEHUS TS IEPBOTO CTOJOIA B KAXKIOM KaJpe, MPHHAMAET JTHHAMIYECKUIT
mopor ZMP, KOTOpbIii aanTupyeTcs K pa3iTHIHbIM CKOPOCTSIM JBUYKEHHS B BUICOIIOCIICIOBATEILHOCTSX, H HCIIONB3YET
URP onmun pa3 miist yMEHbBIICHAST BRIYACIUTEIBHBIX 3aTpar. BEIMOIHEHA OI[CHKA M CpAaBHEHUE MPOU3BOAUTEIIEHOCTH
Hosoro anroput™Ma EARPS u anropurma ARPS ¢ ucrnonbp3zoBanueM pasivyuHbIX BHIEONOCIEI0BATEILHOCTEN st
Pa3IMYHBIX CKOPOCTEHl ABMKeHUS. KonMn4ecTBo ToYeK MoucKa 1 MMKOBOe oTHoIIeHHe curHai-iiryM (Peak Signal-to-Noise
Ratio, PSNR) ucmonb30BaHbl /151 KOJMHYECTBEHHOM OIIEHKHU CIIOKHOCTH M TOYHOCTH BBIYKMCIICHHI. DKCIIEPUMEHTATbHBIC
pe3ynpratsl mokaszany, 4o EARPS npeBocxonut ARPS ¢ Touku 3peHus BEIYHCIUTENBEHON CI0KHOCTH, COXpaHss pU
9TOM BBICOKYIO cTerneHb TouHocTH PSNR. OCHOBHOH BKJIa/ MPEIOKEHHOTO alropuTMa oLeHKH apmkenuss EARPS
3aKIII0YAETCA B JOCTI)KEHHN BBICOKOH CKOPOCTH € MIPHUEMIIEMO TOYHOCTBIO, HE3aBUCHUMO OT CKOPOCTH JBIDKCHHS B
puneokanpax. Amroputm EARPS o cpaBaennio ¢ ARPS, obecnieunn 6oiee 3pheKTHBHBI METOJ] OIICHKU JABHKESHUS
¢ OoJiee IMMPOKOI MPUMEHUMOCTBIO B 00paboTKe BHeO. [1omydeHHBII pe3ynbTar SBIIeTCS 3HAUUTEIBHBIM BKJIATIOM B
pa3paboTKy SPPEKTUBHBIX AITOPUTMOB OIICHKH JIBUIKCHHS.

KnawueBble cjioBa
OIICHKA JBMKCHHMSI, BRIYUCIIMTENIbHAS CII0)KHOCTh, ARPS, ZMP 1 PSNR

Ccpuika gos murupoBanus: leiikep A L, Apud Axman Cykn U.M., ®@azea FO. HoBelit 23dhexTHBHBII ajanTHBHBII
QJITOPUTM IIA0JIOHHOTO MTOUCKA JUIS OLIEHKH JBIOKeHHs1 // HayuHO-TeXHIYeCKHii BECTHUK HH(POPMAIIOHHBIX TEXHOJIOT U,

Mmexanuku u ontuku. 2023. T. 23, Ne 5. C. 955-966 (Ha anr1. 3.). doi: 10.17586/2226-1494-2023-23-5-955-966

Introduction

Motion Estimation (ME) is the most effective
component of the video coding process because it
enables efficient video data compression by anticipating
the motion of objects within frames [1, 2]. Block
Matching Motion Estimation is a popular method due to
its simplicity and effectiveness; however, selecting an
effective Block Matching Algorithm (BMA) necessitates
a trade-off between computing complexity and precision
[3, 4]. When selecting the optimal BMA, the trade-off
between computational complexity and precision is
crucial. While the Exhaustive Block Matching algorithm
is the most accurate and straightforward BMA, it is also
the most computationally demanding. Because of their
predetermined search patterns, rapid algorithms, such as
Three Step Search, New Three Step Search, Four Step
Search, and Diamond Search are quicker but less accurate
[5-8]. Researchers have developed several adaptive
algorithms to solve the limitations of existing algorithms
and produce more efficient and accurate techniques [9—
11]. Among them, the well-known quick adaptive method
is the Adaptive Rood Pattern Search (ARPS) [12—14].
However, ARPS has three critical weaknesses. Firstly, it
lacks an accurate starting motion vector. Secondly, it uses
a fixed Zero Motion Prejudgment (ZMP) [15—17] threshold
value which is unsuitable for fast-motion video sequences.
Lastly, it repetitively uses a (URP), leading to increased
computational complexity and potentially inaccurate results
in terms of coding speed or quality. This work introduces a
revolutionary rapid Efficient Adaptive Rood Pattern Search
(EARPS) method that delivers great speed and accuracy
independent of motion speed in video frames. The results
of the experiments reveal that the new EARPS strategy
outperforms the ARPS algorithm in terms of processing
cost while preserving a Peak Signal-to-Noise Ratio (PSNR)
comparable to the Full Search (FS) algorithm. To begin
with, the suggested EARPS method, it makes use of a
Mean Absolute Frame Difference (MAFD) detector [18]
to determine the sort of motion speed in each frame of the

video sequence, whether slow or fast. When the kind of
motion speed in the video frames is identified, the dynamic
ZMP is enabled [19, 20]. The proposed algorithm next
step should employ the appropriate threshold, whether
slow or fast, to speed up calculations. The new proposed
algorithm makes achievement with that point, which did
not exist in the ARPS algorithm. Due to the lack of speed
detectors, ARPS applied a constant ZMP threshold to all
video sequences, regardless of the types of motion speeds
present. In contrast to ARPS, which employs a predefined
ZMP threshold value of 512 that is only appropriate for
slow motion and does not take into account the kind of
motion speed in the video sequence, the proposed EARPS
algorithm utilizes a dynamic threshold value that is
adjusted for both slow and rapid motion. The dynamic
ZMP threshold in the proposed EARPS method accelerates
calculations, and modifying its values greatly contributes
to speeding up computations while maintaining acceptable
accuracy PSNR [21], as it stops the searching process and
declares the block to be a static block in an early stage in
the algorithm saving many useless computations. Also,
the matching criteria used is different; it is the Sum of
Absolute Difference (SAD) in the ARPS algorithm, while
in the EARPS algorithm, we use Mean Absolute Difference
(MAD) which is more complex in computations but gives
more precise and accurate results as matching criteria for
blocks. Secondly, the proposed EARPS algorithm solves
the problem for the accurate starting point that the ARPS
algorithm was facing, the blocks in the leftmost column
of each frame in ARPS are assigned a constant value of
2 pixels as a motion vector, this assumption harms the
accuracy as it does not depend on actual calculations, it
is only an assumption. Besides, it may be incorrect for
most cases as it has no scientific proof, for example, why
the motion vector is assumed to be two pixels and not any
other value, EARPS algorithm uses the FS algorithm to
calculate the motion vector for the leftmost column blocks.
Due to its intensive search procedure, the FS algorithm
gives the optimal motion vector to produce highly accurate
results. So, the proposed EARPS algorithm benefits
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from an accurate starting point that is close to the global
minimum. This precise starting point significantly enhances
the accuracy and computational efficiency of the EARPS
algorithm. Thirdly, while ARPS algorithm was using a URP
in its refined local search stage many times unrestrictedly
and without a limit to get the final motion vector, which
led to useless computations, since the search area may be
not within the global minimum. However, the proposed
EARPS algorithm, due to the usage of FS algorithm (as
already mentioned), gives an accurate starting point for
the search that accordingly allows the URP to be used in
the refined search stage only once, as the search process
has been started in the correct location. That way the new
proposed EARPS algorithm can speed its computations and
get the accurate motion vector faster.

Overview of the ARPS Algorithm

The most renowned rapid adaptive block matching
technique is ARPS [22]. ARPS uses frame-block-coherent
motion. Thus, if the macroblocks around it change, then the
candidate block will also change. ARPS predicts the motion
vector for the current macroblock using the macroblock
to its left. The ARPS algorithm consists of initial and
refined local search stages as shown in Fig. 1. ARPS uses
the ZMP technique which identifies the immobile blocks
and accordingly terminates the searching process early.
The technique reduces computational complexity by

Calculate SAD

identifying motionless blocks. ARPS algorithm employs
ZMP to enhance search efficiency [23, 24]. ZMP speeds up
computations, especially for slow-motion video sequences.
The method reduces computing costs by omitting the
exhaustive search for immobile blocks.

Steps of ARPS Algorithm

Step 1: Determine the matching error SAD between the
current block and the corresponding block in the reference
frame. When the matched error SAD value is compared to
the ZMP threshold value 7= 512, the outcome is: If the
matching error is less than T value, the present block is
deemed static, and the following search is skipped. If the
block is the leftmost, ARPS assigns a value of 2, Step 2
used if the block is not on the left.

Dynamic ZMP technique steps:

1: If (SAD < T)

2: MV =]0,0]

3: Stop.

4: else in the event that the current block is the border
block farthest to the left.

5: =2,

6: else T=Max{ | MYVPredicted(x) | e | MYVPredicted(y) | }
(coordinates or arms for the rood pattern)

7: Go to Step 2

Step 2: In order to determine the size or magnitude of
the Adaptive Rood Pattern (ARP) arm, the candidate block

Yes o motion
71 vector=0
Is Block in Yes | motion
First Column, Pl vector=2
No
Start Searching Algorithm with ARP = Motion Vector is predicted
centered in Search Window from left block
A 4
Repeat till Motion Vector (MV) is found |« Centre URP at MME
Stop <

Fig. 1. Flowchart of ARPS algorithm
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first checks for the projected motion vector from its left
adjoining macroblock and then uses that motion vector
by choosing the maximum of its coordinates. The four
search points and the anticipated MV location are verified
to determine the current Minimum Matching Error (MME)
point which is aligned with the center of the ARP and the
search window center point.

Step 3: phase three is the local search phase, which
involves setting the center point of a URP at the MME
point detected in Step 2 and checking its properties if the
new MME point is not placed in the center of the current
URP. This process is performed many times until the
motion vector MV and the MME point are determined.

Zero Motion Prejudgment in ARPS

ZMP, which is tasked with spotting immobile blocks
before the search phase, is a crucial part of the ARPS
algorithm. When the candidate block receives a motion
vector with the values (0, 0), indicating that there is no
motion, the search is complete. It significantly reduces
calculation. Using predetermined criteria, ZMP first
determines the MME between the candidate block and
the reference frame block [25, 26]. The matching error
measure used by the ARPS algorithm is SAD, as shown in
the following equation.

n—1n—1
SAD=Y Y |C;— R,
i=0/=0

where, n represents the macroblock size, Ci/' and R,-j denote
the pixels being compared in the current macroblock and
reference macroblock, respectively. By calculating the
SAD value, we can determine the similarity between the
candidate block and the reference block. Static blocks
are identified by comparing the MME (SAD) value to
a fixed threshold known as the ZMP value, denoted as
T =512. If the SAD value is below this threshold, the
block is considered stationary. The fixed ZMP threshold
[27] provides a significant speed improvement without
noticeably degrading the visual quality but is most effective
for slow-motion video sequences. However, it poses a
limitation for video sequences with extensive fast motion,
since they cannot benefit substantially from this fixed
threshold. Consequently, selecting an appropriate fixed
threshold that suits all motion types in video sequences
becomes challenging, representing the first weakness of
the ARPS algorithm. To address this limitation, we propose
using a threshold that can be adjusted based on the frame
motion speed. For faster-motion videos, the threshold can
be increased to obtain greater performance gains. In our
recently proposed algorithm, we implement a dynamic
ZMP threshold that adapts to the motion speed of both
fast- and slow-motion videos. This approach affords greater
adaptability and enhanced efficacy in a variety of motion
scenarios.

The Initial Search Step in the ARPS Algorithm

ARP is adaptive. ARP is calculated dynamically for
each macroblock depending on its predicted motion vector.
Its size is determined by the motion vector of the left
neighboring block. Fig. 2 shows a symmetrical adaptable
rood design with four search points at the four vertices.
ARP step size is the vertex-to-center distance. The four-

L
Predicted ——@
Vector
. \ + | *
Step
Size
' o

Fig. 2. ARPS Rood Pattern [5]

armed rood pattern vertices and the target motion vector
are validated as searching points. The starting motion
vector is crucial. Thus, the ARPS algorithm initial step has
to choose a good local search starting point. The ARPS
approach tried to find a starting point as close to the global
minimum as possible, however, the algorithm had no left
blocks to predict from for the leftmost boundary blocks
in each frame. Accordingly, the ARP arm size is set to
two pixels I' = 2. That assumption harmed the accuracy
as it does not depend on actual calculations, it is only an
assumption. Besides, it may be incorrect in most cases as
it has no scientific proof, for example, why the motion
vector is assumed to be two pixels and not any other value.
So, the ARPS algorithm has a second point of weakness
which affects its performance considerably. That inaccurate
starting point of the algorithm can cause the whole search
process to be trapped in a local minimum problem,
especially in the extended search path.

The Refined Local Search Step in the ARPS
Algorithm

The ARPS algorithm then advances to the local search
stage after choosing a starting point in the previous step.
URP, which is a small, compact, and fixed-size search
pattern, is applied repeatedly and randomly until MME
becomes the center point of the search pattern. So, URP
is applied until the ultimate motion vector is discovered.
The frequent and unrestricted use of the URP by the ARPS
algorithm, however, is a drawback. Using that tiny pattern
search stage may gradually improve the ME. Although it
may appear like this, and the approach is effective, it may
need more time and computer power, which would lower
the algorithm performance. The assumption of a unimodal
error surface may be an issue with unlimited use of the
URP. This presumption makes the unavoidable assumption
that the search space has a single global minimum.
Depending solely on the starting point, which may itself
be inaccurate, repeatedly applying a small search pattern
can restrict the algorithm ability to explore the entire search
space and find the true global minimum. Consequently, this
limitation can negatively impact the accuracy and reliability
of the ME results of the ARPS algorithm [28, 29].
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Efficient Adaptive Rood Pattern Search algorithm —
EARPS algorithm

The proposed EARPS algorithm aims to address the
limitations of the ARPS by introducing a fast and accurate
block-based search technique that improves computational
efficiency while ensuring image quality. EARPS improves
upon the three weaknesses identified in the ARPS
algorithm.

Firstly: the problem of fixed ZMP threshold
unsuitable for fast motion videos

EARPS utilizes an adjustable or dynamic ZMP
threshold. This threshold has two values: one suitable for
frames with small motion and another for frames with fast
motion. By adapting the threshold to the specific motion
characteristics of the frames, EARPS achieves faster
computations without compromising image quality. The
dynamic ZMP threshold is assigned a lower value when
slow motion is observed and a higher value when fast
motion is observed. One common method for evaluating
video frame discrepancies is the MAFD detector. This
detector is used by EARPS to find instances of movement
in videos. This average absolute pixel intensity difference
between frames is provided by the MAFD detector.
The equation below can be used to depict the MAFD
calculation.

M-1N-1

1
MAFDn = ]M_N ; ]Z V;’l(l’.]) 7f1‘1—1(i7j)|’ (1)

where M and N are the width and height of the frames,
(i, j) 1s the pixel intensity at position (i, j) and 7 is the
frame number. At each frame transition, the MAFD, which
is the first-order derivative of f,, calculates the level of
dissimilarity by conducting extensive experiments with
various video samples. A threshold 7 value of 14 is
assigned to the MAFD detector. When the difference in
pixel intensities between consecutive frames is below this
threshold, indicating a small value, the motion is classified
as slow. Conversely, if the difference exceeds the threshold,
the motion is identified as fast. The determination of the
motion type between successive frames using the MAFD
detector plays a crucial role in the EARPS algorithm.
It enables the algorithm to employ an adjustable ZMP
threshold that varies depending on the motion speed
behavior. Specifically, two predetermined threshold values
are used: B for slow motion and y for fast motion. The
MAD minimal matching error calculated as shown in the
equation below is compared to these thresholds. Static
blocks have matching errors below the ZMP threshold.
1 n—1n-1
totalMAD = - 2 2IC;— Ryl
n”i=0,=0

where n is macroblock side, Cj; and R;; are the pixels being
compared in current macro block and reference macro
block, respectively.

Dynamic ZMP technique steps:

1: Check If (MAFD < 14), then.

2: declare the frame has slow motion.

3: Calculate MAD for every block in the frame.
4. If (MAFD < ZMP), threshold slow f Then

5: MV=0

6: Stop the search.

7: else move to the modified ARPS algorithm and declare
the frame has a fast motion.

8: Calculate MAD for every block in the frame.

9: If (MAD < ZMP) threshold fast y

10: Then MV =0, Stop the search

11: else move to the modified ARPS algorithm.

12:  END

Secondly: the problem of the optimal starting point

The EARPS algorithm effectively addresses the second
critical weakness of the ARPS algorithm. It achieves this by
utilizing the FS algorithm for the leftmost column blocks
in each frame. The FS algorithm is an exhaustive search
method that searches all pixels in the search window to
determine the optimal motion vector. Due to its intensive
search procedure, the FS algorithm produces highly
accurate results. By applying the FS algorithm as the initial
step in EARPS, the algorithm benefits from an accurate
starting point that is close to the global minimum. This
precise starting point significantly enhances the accuracy
and computational efficiency of the proposed EARPS
algorithm.

Thirdly: the problem of unrestrictedly and
repeatedly using of URP search pattern

To overcome the third weakness, EARPS focuses the
search on the nearest location to the global minimum error
or the best matching point for each block. By doing so,
the refined local search step using the URP is applied only
for one iteration. This is because there is a high likelihood
that a single iteration is sufficient to obtain the correct
motion vector, thanks to the accurate searching locations
determined during the initial search step. By reducing the
number of iterations and computations, EARPS achieves
improved computational complexity without sacrificing the
accuracy of the coded video. Fig. 3 shows the steps of the
proposed EARPS algorithm.

EARPS algorithm
1: compute MAFD between every two successive
frames.

2: If (MAFD < T), T the threshold value is set to a
value =14 then

3: Frames have slow motion.

4: else

5: Frames have fast motion.

6: Compute MAD at the center point of the search
window MAD (0,0),

7. I (MAD <ZMP) TH Slow f§ or MAD<ZMPTH Fast
y then

8: Stop

9: else if this is the leftmost boundary block, then.

10: Search method = FS.

11:  else Search method = modified ARPS

Contribution of the new proposed EARPS algorithm
— The proposed EARPS method begins by determining
the motion speed in each frame of the video series
using a MAFD detector. After determining the motion
speed in the video frames, the following stage of the
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(MAFD)
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Yes

if MAD <ZMP
threshold fast

Motion Vector = 0

Yes
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Start searching algorithm with ARP centered in search window

-

Centre Unit Rood Pattern (URP) at Minimum Matching Error (MME)

-

Find Motion Vector (MV) |

N

y

C Stop

e

Fig. 3. Flowchart of EARPS algorithm

algorithm dynamic ZMP may employ the appropriate
threshold, slow or fast, to speed up calculations. The
new proposed algorithm makes achievement with that
point, which did not exist in the ARPS algorithm. As
ARPS did not use speed detectors, it used a fixed ZMP
threshold for all video sequences, whatever the type of
motion speed in those sequences.

EARPS uses a dynamic threshold value that is
adjusted for slow and fast motion while ARPS uses a
predetermined ZMP threshold value of 512 which is
suitable only for slow motion not caring for the type
of motion in the video sequence. The dynamic ZMP
threshold in the proposed EARPS algorithm speeds up
the computations and the changing of its values helps so
much in increasing speed while preserving reasonable
accuracy, since it stops the searching process and

declares the block to be static block in an early stage in
the algorithm saving many useless computations.

— The matching criteria used are different; it is SAD

in ARPS, while it is MAD in EARPS which is more
complex in computations but gives more precise and
accurate results as a matching criterion for blocks.

The blocks in the leftmost column of each frame
in ARPS are assigned a constant value of 2 pixels
as a motion vector, as previously mentioned; that
assumption harmed the accuracy, as it does not depend
on actual calculations, it is only an assumption.
Besides, it may be incorrect for most cases as it has no
scientific proof, for example, why the motion vector
is assumed to be two pixels and not any other value,
while in EARPS the leftmost column blocks use the FS
algorithm to calculate the motion vector. By utilizing
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the FS algorithm for the leftmost column blocks in
each frame. The FS algorithm gives the optimal motion
vector. Due to its intensive search procedure, the FS
algorithm produces highly accurate results. EARPS
algorithm benefits from an accurate starting point that is
close to the global minimum. This precise starting point
significantly enhances the accuracy and computational
efficiency of the EARPS algorithm.

— The usage of the FS algorithm in the proposed EARPS
algorithm (as mentioned), helps to give an accurate
starting point for the search which accordingly allows
the URP in the refined search stage to be used only once
as the searching process was put in the correct location.
In that way EARPS can speed its computations and get
the accurate motion vector faster. While the URP is
used unrestrictedly in the ARPS algorithm, which leads
to useless computations

Simulation Results

To achieve better results, ME algorithms compete to use
fewer search positions and to add new techniques to deliver
the best search results. FS algorithm evaluates N x N pixel
block, within a search window with a range w in both
directions in the reference frame. The candidate block is
compared to N x N pixel block for each of the 2w + 1)
2 search places (including the current row and column of
the reference frame). FS involves numerous calculations.
If w =7 pixels away from the current block locations that
requires 15 x 15 =225 search positions. Despite FS gives
optimal results, yet modern microprocessors cannot do
complete search with acceptable speed, particularly in
real-time applications. Comparisons between the previous
FS, ARPS algorithms and the proposed EARPS algorithm
will be conducted using two important metrics to get the
simulation results.

The computational complexity of the algorithm

To minimize computational complexity, all algorithms
strive for fewer checking points. Prediction inaccuracy and
computational complexity are used to assess fast BMA
performance. By restricting checking sites, fast search
pattern BMAs reduce computation. The computational
complexity of the equation below may be directly compared
by counting checking points.

Total Search No.
Total No. of Blocks'

Average No. of Search Points (NSP) =

Calculation time is used to gauge the algorithm
overhead, which includes storing and requesting blocks
for matching, comparing blocks, etc. Speed of search is
NSP. Equation below represents the speed ratio using

searching points:
. NSP (FS)
Speed up ratio (NSP) = ——————.
NSP (algorithm)

And speed-up ratio using computational time is shown as
follows.

Total Time (FS)
Total Time (algorithm)

Speed up ratio (Time) =

The accuracy of the encoded image

PSNR difference is used for performance comparison.
The difference in PSNR between any algorithm and FS
algorithm reveals the accuracy of that algorithm. PSNR
compares the predicted frame to the target frame to
determine search accuracy. PSNR is calculated by the
Motion Estimation Process to measure frame accuracy as
follows

(Peak to peak value of original data)*

The following criteria must be precisely specified
during algorithm construction in order to achieve the search
accuracy-complexity trade-off. We compared the suggested
EARPS approach to ARPS in order to analyze the trade-off
between computational complexity and PSNR.

Verification of Computational Complexity for the
Proposed EARPS Algorithm

According to the first step of the proposed EARPS
algorithm for the detection of the type of motion speed
in every frame in the video sequence, experimentation
with various values for the MAFD detector previously
mentioned in equation (1), discovered that a value of
14 proved to be suitable as a threshold. This value had
been previously used in well-known research related to
scene changes. To validate its effectiveness, the value of
14 was applied to 20 different video sequences, and the
results confirmed its suitability as a threshold. When the
MAFD value calculated is below 14, it indicates slow
motion, while values above 14 indicate fast motion.
Therefore, the value of the threshold T for MAFD = 14
can be confidently used as a threshold for detecting motion
speed. So EARPS algorithm can accurately classify the
motion in the video frames as either slow or fast. The
MAFD detector was applied to a set of 14 videos, namely,
“akiyo”, “bridge close”, “bridge far”, “container”, “hall”,
“mother-daughter”, “missa”, “news”, “paris”, “pencil”,
“waterfall”, “ship”, “silent”, and “tempete”, the absolute
difference in pixel intensities between consecutive frames
was consistently smaller than the threshold value of 14.
Consequently, the 14 videos can be classified as slow-
motion videos. On the other hand, when the MAFD
detector was applied to another set of 6 videos, including
“bus”, “caltrain”, “football”, “foreman”, “garden”, and
“stefan”, the simulation results revealed that the absolute
difference in pixel intensities between consecutive frames
surpassed 14, As a result, these videos can be categorized
as fast-motion videos. The simulation results are shown in
Fig. 4, a, using the “akiyo” video sequence as an example
of slow motion, and Fig. 4, b, the “bus” sequence is used
as an example of a fast sequence.

We evaluated each strategy on different video
sequences and calculated computational cost by averaging
the number of searching positions in each frame. We put
the new EARPS algorithm to the test on slow and fast
motion video sequences. Several slow and fast speed
video sequences were investigated. Fig. 5, a shows a
comparison of computation points for the “silent” video
sequence, representing slow motion. Similarly, Fig. 5, b
compares computation points for the “bus” video sequence
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Fig. 5. Comparison of computations for ARPS and EARPS for: “silent” sequence (a); “bus” sequences (b)

representing fast motion. The proposed EARPS algorithm
achieves the objective of minimizing computation points,
as it consistently demonstrates the lowest number of points.

The simulation results in Fig. 6, a illustrate the impact

of changing the ZMP threshold for slow motion, denoted
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as B. Applying the proposed algorithm to the “bridge close”
video sequence as a sample of slow sequence shows that,
when B is changed from 3 to 4, the number of searching
points decreases resulting in faster computations, which
aligns with the primary goal of the proposed algorithm.
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Fig. 6. Comparison of computations of ARPS and EARPS-ZMP algorithms: with § =4 and 3 on the “bridge closing” video sequence
(a); with y =4 and 7 on the “bus” video sequence ()
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Similarly, in Fig. 6, b, the ZMP threshold for fast motion,
represented as y, is varied between values 4 and 7. Applying
the proposed algorithm to the “bus” video sequence as a
sample of fast sequence shows that using y equal to 7 yields
better results compared to y equal to 4. These simulation
results demonstrate the influence of ZMP threshold values
on the computational complexity of the algorithm.

Table 1 shows the average searching points per frame for
each strategy on slow and fast-motion video sequences. The
ZMP threshold was set by the EARPS algorithm at 3 and 4
for slow motion and 5 and 7 for fast motion. According to
the table, FS has the highest average number of searching
points, ARPS has less number, then the proposed EARPS
has the lowest. These results demonstrate that the proposed
EARPS approach has the best computational complexity,
which was the algorithm main purpose. We discovered
that increasing the slow motion ZMP threshold from 3 to
4 enhances EARPS performance. Calculations are faster
when the average number of search places is reduced.
The algorithm also enhances the search for fast-motion
video sequences. Using the ZMP threshold to identify and
delete static blocks early saves computational resources and
simplifies the recommended approach.

Verification of Accuracy and Video Quality
for the Proposed EARPS Algorithm

PSNR is a metric used to assess video quality. The
simulation results in (Fig. 7) show the “bus” video
sequence which is a fast-motion video clip where EARPS
produced PSNR values very near to the FS technique.
Experiments show that the EARPS method outperforms the

FS and ARPS algorithms in terms of calculation complexity
while retaining an appropriate PSNR. For ME, the EARPS
approach balanced computing complexity and PSNR.
Techniques for estimating motion in video processing are
improving. The EARPS algorithm increases the efficiency
for video coding.

Table 2 compares PSNR for the three algorithms FS,
ARPS, and EARPS when applied on various slow and
fast-motion video sequences. The table shows that FS
gives the highest PSNR, while ARPS and EARPS have
comparable PSNR values. Additionally, the dynamic
ZMP technique integrated with the proposed algorithm
effectively maintains near-equivalent video quality to that

30

24
z - ARPS
= - EARPS-ZMP f§ = 4
10! - EARPS-ZMPy = 7
0 L L
0 50 100 150

Frame number

Fig. 7. PSNR Comparison of FS, ARPS, and EARPS algorithms
on “bus” video sequence

Table 1. The average number of computations points per frame for different slow and fast video sequences in case =3, f =4

andy=5,y=7
Video Sequence Type of motion speed FS ARPS Fasltiﬁllr{ezlsloﬁ;;: 5 Fas?ﬁlif;}sm&:;‘: 7
pencil slow 204.2828 5.2612 0.8883 0.4270
bridge close slow 204.1807 5.9306 0.8695 0.4943
bridge far slow 204.1835 5.9222 0.5055 0.0240
container slow 203.6019 5.1312 0.3897 0.2202
missa slow 204.2828 5.1772 0.1384 0.1047
mother daughter slow 203.6419 6.4961 1.0714 0.8075
news slow 203.6540 5.6543 0.8962 0.7431
paris slow 204.0910 5.2994 0.8888 0.7537
silent slow 203.4971 6.1313 1.8222 1.5591
waterfall slow 203.4971 5.2428 3.2892 1.7439
akiyo slow 203.6645 5.0330 0.2982 0.2154
full Fast 204.2043 7.0789 4.8055 4.5304
highway Fast 204.1807 8.1427 2.8505 2.1376
caltrain Fast 204.2828 6.8714 6.2343 6.1345
garden Fast 204.2888 8.6079 7.5052 7.4972
foreman Fast 203.6019 8.8433 8.2325 8.1495
bus Fast 202.9209 9.5001 8.3452 8.2351
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Table 2. Comparison of PSNR values for FS, ARPS, EARPS Algorithms

EARPS EARPS
Video Sequence FS ARPS Slow threshold B =3, Slow threshold B =4,
Fast threshold y =5 Fast threshold y =5

container 38.1402 38.0905 38.0883 38.0883
hall 34.6978 34.6335 34.6087 34.5842
highway 34.6529 33.7771 33.6693 33.5379
waterfall 34.4321 34.4310 34.4285 34.4050
tempete 26.5588 26.3933 26.3814 26.3686
mother-daughter 40.2563 40.1360 39.9699 39.7358
news 36.6172 36.3410 36.2431 36.1670
paris 33.5439 33.3533 33.3340 33.3019
bridge-far 38.4102 38.3896 38.3283 38.3217
bridge-close 35.5151 35.5148 35.5143 35.5142
silent 35.3268 34.9261 34.8755 34.8051
missa 42.5250 42.5197 42.5143 42.5105
pencil 39.3883 39.3698 39.2218 39.0969
ship 36.6025 36.6025 36.6005 36.6010
meeting 34.6662 34.6390 34.5957 34.5501
stefan 25.1846 24.869%4 24.7779 24.7698
coastguard 30.3304 30.3119 30.3001 30.2491
bus 245111 22.9449 22.8960 22.8960
foreman 31.1071 30.8226 30.6819 30.5173
garden 25.0739 24.9228 24.8799 24.8799
akiyo 42.7995 42.7694 42.7253 42.6305
football 24.9109 24.4958 24.4666 24.4614
caltrain 22.5290 22.4767 22.4456 22.4434
full 31.2719 31.179 31.1364 31.1130

of the FS algorithm. The table shows the PSNR values
when using ZMP threshold slow B =3, ZMP threshold
fast y = 5. Simulation results show the PSNR values when
changing the ZMP threshold value for the slow motion f to
4 while keeping ZMP threshold fast y = 5. Despite changing
the ZMP threshold slow motion from 3 to 4 has a good
effect on the computational speed, but on the other side
that causes degradation in PSNR values for some cases.
For that reason, the selection of ZMP threshold values is
so important and should be suitable for the applications
used, as some applications need very high speed, whatever
the quality is, only to be near to the optimal. In contrast,
others care for the accuracy of the video quality, not caring
for speed like medical applications. Therefore, the resulting
PSNR values achieved when changing the ZMP threshold
values for slow and fast motion, demonstrate that the

selection of appropriate ZMP threshold values is crucial
for balancing computational speed and video quality.

Conclusion

In conclusion, the results of the studies reveal that the
proposed EARPS algorithm outperforms both FS and ARPS
in terms of computing complexity while maintaining an
acceptable degree of PSNR accuracy. This result indicates
the effectiveness of the proposed strategy in balancing
computational complexity and PSNR. It also underlines the
technique advantages. In summary, the proposed EARPS
approach contributes to the development of more exact
and economical motion estimating algorithms for video
processing applications.
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