Этот факт вполне согласуется с предложенным нами механизмом: при вторичной термообработке происходит «сброс» электрона от сурьмяного комплекса, захват его ионом серебра с образованием нейтрального атома и присоединение атомов к оставшимся фрагментам (мелким наночастицам, необладающим плазмонным резонансом), что приводит вновь к росту наночастиц. Однако из-за «потерь» электронов количество НЧС несколько меньше, чем в первоначальном облученном состоянии. Схематично процесс образования НЧС при повторной ТО можно выразить следующим образом:

1. «сброс» электрона с сурьмы ($[Sb^{5+}]^-+kT \rightarrow e^-+Sb^{5+}$);

2. захват освободившихся термоэлектронов (е-+Аg+→Аgo) и 3) рост НЧС (Agn0+kAg0=Agn+k0).

[Л]. Игнатьев Д.А., Игнатьев А.И., Никоноров Н.В. Фотодеструкция наночастиц серебра в фото-терморефрактивных стеклах // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 3 (85). С. 158–159.

Игнатьев Дмитрий Александрович	-	инженер, Санкт-Петербургский национальный исследовательский
		университет информационных технологий, механики и оптики, Санкт-
		Петербург, Россия, ignatiev_d_a@mail.ru
Игнатьев Александр Иванович	_	зав. лабораторией, Санкт-Петербургский национальный исследова-
		тельский университет информационных технологий, механики и оп-
		тики, Санкт-Петербург, Россия, ignatiev@oi.ifmo.ru
Никоноров Николай Валентинович	-	доктор физмат. наук, профессор, зав. кафедрой, Санкт-
		Петербургский национальный исследовательский университет ин-
		формационных технологий, механики и оптики, Санкт-Петербург,
		Россия, Nikonorov@oi.ifmo.ru
Стародубов Дмитрий Сергеевич	-	кандидат физмат. наук, научный сотрудник, Университет Южной
		Калифорнии, Лос-Анджелес, США, dstarodubov@gmail.ru
Dmitrv Ignatiev	_	engineer, Saint Petersburg National Research University of Information
		Technologies, Mechanics and Optics, Saint Petersburg, Russia,
		ignatiev d a@mail.ru
Alexander Ignatiev	_	Head of laboratory, Saint Petersburg National Research University of In-
C		formation Technologies, Mechanics and Optics, Saint Petersburg, Russia,
		ignatiev@oi.ifmo.ru
Nicolai Nikonorov	_	D.Sc., Professor, Department head, Saint Petersburg National Research
		University of Information Technologies, Mechanics and Optics, Saint Pe-
		tersburg, Russia, Nikonorov@oi.ifmo.ru
Dmitry Starodubov	-	PhD, research scientist, University of Southern California, CA,
-		USA,dstarodubov@gmail.ru

УДК 535.3+519.642.7

УРАВНЕНИЯ ПЕРЕНОСА ИЗЛУЧЕНИЯ В ИНФРАКРАСНОЙ ТОМОГРАФИИ В СЛУЧАЕ АКТИВНО-ПАССИВНОЙ ДИАГНОСТИКИ И ВЕЕРНОГО СКАНИРОВАНИЯ¹ А.А. Макарова^а

^а Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия, alena.etalon@gmail.com

Сформулирована схема веерного сканирования горячего газа в задаче инфракрасной томографии. Использованы два режима диагностики: активный (ON) – с включенным источником, пассивный (OFF) – без источника. Выведены два интегральных уравнения относительно коэффициента абсорбции *k* и функции Планка *B* среды (по которой можно рассчитать температурный профиль среды *T*).

Ключевые слова: ИК томография, интегральные уравнения переноса излучения, активный и пассивный режимы диагностики, веерное сканирование, коэффициент абсорбции, температурный профиль.

EQUATIONS OF RADIATION TRANSFER IN INFRARED TOMOGRAPHY IN THE CASE OF ACTIVE-PASSIVE DIAGNOSIS AND SWEEPING SCANNING² A. Makarova^b

^b Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia, alena.etalon@gmail.com

Sweeping scanning scheme of a hot gas in the task of infrared tomography is formulated. Two diagnosis regimes are used: the active one (ON) – with included source and the passive one (OFF) – without it. Two integral equations are deduced concerning the absorption coefficient *k* and the Planck function *B* of a medium (by which it is possible to calculate the temperature profile of a medium *T*).

Keywords: IR tomography, integral equations of radiation transfer, active and passive diagnosis regimes, sweeping scanning, absorption coefficient, temperature profile.

¹ Работа выполнена при поддержке РФФИ (грант № 13-08-00442).

² The work was done with support from the Russian Foundation for Basic Research (grant N_{2} 13-08-00442)

Научно-технический вестник информационных технологий, механики и оптики Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2014, №1 (89)

В дополнение к обзорной статье [Л] рассмотрим случай веерного сканирования некоторого *z*-сечения среды в задаче инфракрасной (ИК) томографии. На рисунке представлено два варианта такого сканирования. На рисунке, а, несколько сканеров посылают в направлении одного детектора лучи с интенсивностью I_0 , и детектор измеряет интенсивности $I_R(\theta)$ с включенным источником (активный режим (ON)), а также интенсивности $I_g(\theta)$ без источника (пассивный режим (OFF)). На рисунке, б, один сканер посылает в направлении нескольких детекторов лучи с интенсивностью I_0 , и детекторы фиксируют интенсивности $I_R(\theta)$, а также $I_g(\theta)$ без источника, где θ – угол сканирования.

Математическое описание обоих вариантов одинаковое. Рассмотрим для определенности схему, представленную на рисунке, б. В режиме ON интенсивность на детекторе в функции θ запишется как

$$I_{R}(\theta) = B(T_{0}) \exp\left(-\int_{0}^{\xi_{m}} k(\theta,\xi) d\xi\right) + \exp\left(-\int_{0}^{\xi_{m}} k(\theta,\xi) d\xi\right) \cdot \left\{\int_{0}^{\xi_{m}} k(\theta,\xi) B(T_{g}(\theta,\xi)) \exp\left(\int_{0}^{\xi} k(\theta,\xi') d\xi'\right) d\xi\right\},$$
(1)

а в режиме OFF

$$I_{g}(\theta) = \int_{0}^{\xi_{m}} k(\theta,\xi) B(T_{g}(\theta,\xi)) \exp\left(-\int_{\xi}^{\xi_{m}} k(\theta,\xi') d\xi'\right) d\xi , \qquad (2)$$

где ξ – координата вдоль луча, $\xi_m = \xi_{max}(\theta)$, $B(T_0)$ – функция Планка источника. Разность функций $I_R(\theta)$ и $I_e(\theta)$ равна

Рисунок. Два варианта веерного сканирования при некотором одном ракурсе ϕ : несколько сканеров генерируют излучение в направлении одного детектора (а); один сканер генерирует излучение в направлении нескольких детекторов (б)

Интегральные уравнения (1)–(3) позволяют определить коэффициент абсорбции $k(\theta, \xi)$ и функцию Планка среды $B(T_g(\theta, \xi))$, а также температурный профиль $T_g(\theta, \xi)$ при условии, что экспериментальные функции I_R , I_g и I_T получены для ряда ракурсов φ , т.е. получены $I_R(\theta, \varphi)$, $I_g(\theta, \varphi)$ и $I_T(\theta, \varphi)$. Л. Сизиков В.С. Инфракрасная томография горячего газа: математическая модель активно-пассивной диагностики // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 6 (88). С. 3–17.

Макарова Алена Алексеевна

студент, Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия, alena.etalon@gmail.com

Alena Makarova – student, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia, alena.etalon@gmail.com