ОПТИЧЕСКИЕ И ОПТИКО-ЭЛЕКТРОННЫЕ ПРИБОРЫ И СИСТЕМЫ

УДК 535.317

А. Л. Сушков

КОРРЕКЦИЯ КРИВИЗНЫ ПОЛЯ ИЗОБРАЖЕНИЯ ЛИНЗЫ С РАДИАЛЬНОЙ НЕОДНОРОДНОСТЬЮ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ

Рассмотрены подходы к расчету линзы с минимизированной кривизной изображения в области аберраций третьего и высших порядков на основе применения неоднородной оптической среды с радиальным градиентом показателя преломления. Такая линза может быть использована с целью конструктивного упрощения компонента оптической системы для минимизации его габаритов.

Ключевые слова: линза, кривизна поля изображения, радиальный градиент показателя преломления.

Рассмотрим условие получения заданной величины кривизны поля третьего порядка (кривизны поля Петцваля) одиночной линзы в воздухе при наличии радиального градиента показателя преломления (ПП).

В однородной линзе кривизна изображения в области Зейделя отсутствует (изображение плоское), если линза является мениском с поверхностями равной кривизны. Это следует из формулы [1]:

$$S_{\rm IVe} = -\sum \frac{\Lambda \mu}{r},\tag{1}$$

где $\mu = \frac{1}{n}$, *n* — показатель преломления материала линзы, *r* — радиус кривизны поверхности линзы, *S*_{IVE} — коэффициент Петцваля при естественной нормировке углов и высот первого и второго вспомогательных лучей.

При различных значениях кривизны поверхностей линзы изображение находится на поверхности с радиусом кривизны, определяемым из формулы [2]:

$$\frac{1}{R_p} = -\frac{n'}{f'} S_{\rm IV\kappa},\tag{2}$$

где f' — фокусное расстояние линзы, n' — показатель преломления в пространстве изображений, R_p — радиус Петцваля, а коэффициент $S_{IV\kappa}$ имеет каноническую нормировку (f'=1).

Естественная и каноническая нормировки коэффициента S_{IV} связаны следующим образом: $S_{IV\kappa} = S_{IVe} f'$.

Согласно формуле (1), для одиночной линзы имеем:

$$S_{\rm IVe} = \frac{1}{n} \left(n - 1 \right) \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$
(3)

Оптическая сила тонкой линзы определяется как

$$\Phi = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right),$$
(4)

откуда получим выражение:

$$S_{\rm IVe} = \frac{\Phi}{n}.$$
 (5)

Из (5) видно, что при f=1 коэффициент $S_{IV\kappa}$ для тонкой линзы есть величина, обратная показателю преломления n.

Из формулы (1) следует, что для сложных многолинзовых компонентов, содержащих *k* линз, формула (5) записывается в виде

$$S_{\rm IV} = \sum \frac{\Phi_k}{n_k},\tag{6}$$

где Φ_k — оптическая сила *k*-й линзы.

Согласно выражению (6), в схемах объективов с плоским изображением необходимо присутствие как положительных, так и отрицательных линз. Радиальная неоднородность ПП, согласно работе [3], является дополнительным коррекционным параметром для получения в линзе заданной кривизны изображения.

Радиальное распределение ПП в линзе задается полиномом:

$$n(y) = n_{00} + n_{10}y^2 + n_{20}y^4 + \dots,$$

где n_{00} — показатель преломления на оси линзы, n_{10} , n_{20} — коэффициенты, определяющие свойства градиентной среды в области первого и третьего порядков.

Покажем, что, воспользовавшись формулами для коэффициентов аберрации третьего порядка градиентных оптических систем на начальном этапе синтеза линзы, можно получить заданное значение коэффициента $S_{IV} = 0$ (в частном случае).

Известно [3, 4], что для градиентной линзы

$$S_{\rm IVe} = \overline{S}_{\rm IVe} + \tilde{S}_{\rm IVe} \,, \tag{7}$$

где \overline{S}_{IVe} — однородная составляющая, обусловленная величиной показателя преломления и оптической силой тонкой линзы, \tilde{S}_{IVe} — составляющая, обусловленная наличием радиальной неоднородности показателя преломления:

$$\overline{S}_{IVe} = -\sum_{1}^{2} \frac{\Delta \mu}{r_k} = \frac{n_{00} - 1}{n_{00}} \left(\frac{1}{r_1} - \frac{1}{r_2} \right), \quad \tilde{S}_{IVe} = -\frac{2n_{10}d}{n_{00}^2}, \quad (8)$$

где *r*₁, *r*₂ — радиус кривизны 1-й и 2-й поверхностей линзы, *d* — толщина линзы.

Линза с радиальной неоднородностью ПП может быть описана эквивалентной системой из двух элементов в воздухе: однородной линзой толщиной d с радиусами кривизны r_1 , r_2 и плоскопараллельной пластинкой толщиной d с градиентным ПП (линза Вуда).

Анализ в параксиальной области показывает, что поскольку оптическая сила градиентной пластинки с фокусирующим и рассеивающим распределением ПП определяется зависимостью $\tilde{\Phi} = -2n_{10}d$, то основной параметр тонкой линзы П можно представить в виде суммы:

$$\Pi = \overline{\Pi} + \overline{\Pi} \,, \tag{9}$$

где $\overline{\Pi}$, $\overline{\Pi}$ — коэффициенты кривизны изображения π (по Г. Г. Слюсареву [1]) однородной линзы и градиентной плоскопараллельной пластинки:

$$\overline{\Pi} = \frac{1}{n_{00}}, \quad \widetilde{\Pi} = \frac{1}{n_{00}^2}.$$
 (10)

Если градиентная среда является фокусирующей, т.е. $n_{10} < 0$ и $\tilde{\Phi} > 0$, то для исправления кривизны Петцваля оптическая сила однородной линзы должна быть отрицательной. Использование условий (9) и (10) позволяет расширить возможности проектировщика по получению заданной величины кривизны поля в одиночной линзе.

Если воспользоваться соотношениями (7) и (8) для линзы малой, но конечной толщины, то для заданной величины $S_{IV\kappa}$ получим соотношение кривизны поверхностей линзы:

$$\frac{1}{r_1} - \frac{1}{r_2} = \frac{\frac{S_{IV\kappa} n_{00}}{f'} + \frac{2n_{10}d}{n_{00}}}{(n_{00} - 1)}.$$
(11)

Оптическую силу тонкой градиентной линзы можно рассматривать как сумму оптических сил, обусловленных кривизной поверхностей линзы и неоднородной составляющей показателя преломления:

$$\Phi = \overline{\Phi} + \widetilde{\Phi} \,, \tag{12}$$

где

$$\overline{\Phi} = \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \left(n_{00} - 1\right) + \frac{\left(n_{00} - 1\right)^2 d}{r_1 r_2 n_{00}},\tag{13}$$

$$\tilde{\Phi} = -2n_{10}d . \tag{14}$$

После подстановки (13) и (14) в (12) и алгебраических преобразований совместно с уравнением (11) получаем формулу для коэффициента n_{10} , при котором линза имеет заданную величину коэффициента $S_{IV\kappa}$:

$$n_{10} = \frac{\frac{n_{00} - 1}{r_1^2 n_{00}} - \frac{1}{f' d(n_{00} - 1)} - \frac{S_{IV\kappa}}{f'} \left(\frac{1}{r_1} - \frac{n_{00}}{d(n_{00} - 1)}\right)}{\frac{2}{n_{00}} + \frac{2d}{r_1 n_{00}^2}}.$$
(15)

Формула (15) дает первое приближение в расчете заданной величины коэффициента $S_{IV\kappa}$. Точность ее повышается с уменьшением толщины линзы.

В качестве примеров приведем результаты введения в исходно однородную линзу радиальной неоднородности ПП с целью исправления кривизны поля.

В табл. 1—9 приведены конструктивные данные линз с различной конфигурацией поверхностей, их фокусные расстояния и величины астигматических отрезков Z_m , Z_s (здесь ω , y'— угловое и линейное поле в пространстве предметов и изображений). Рассматриваются исходная однородная линза, линза с исправленной кривизной третьего порядка (15) и линза, кривизна поля высших порядков которой минимизирована оптимизацией кривизны поверхностей, толщины линзы, коэффициента n_{10} и положения входного зрачка s_p .

Пример 1. В табл. 1 приведены конструктивные параметры и аберрации исходной однородной линзы — *положительного мениска* с фокусным расстоянием f=20 мм. Входной зрачок расположен справа от первой поверхности на расстоянии $s_p=3,0$ мм; t=0,000 мм⁻¹ — фокусирующая константа; $r_1=8,000$; $r_2=21,75$; d=2; $n_{00}=1,6$; $n_{10}=0,00$ мм⁻².

			Габлица І
ω,°	у', мм	Z'_m , MM	Z'_s , MM
-8,2850	3,00	-0,5832	-0,2822
-6,0208	2,12	-0,2966	-0,143
0,000	0,00	0,0000	0,0000

На краю поля линза имеет значительные астигматические отрезки Z'_m , Z'_s , $S_{IVe} = 0.029633$, $S_{IV\kappa} = 0.59267$.

В табл. 2 приведены характеристики линзы после введения в ПП градиента по формуле (15). Линза имеет конфигурацию поверхностей "отрицательный мениск". Параксиальные параметры: фокусное расстояние f=19,41 мм; $s'_F=16,44$ мм; входной зрачок на расстоянии $s_p=3,0$ мм; t = 0,176 мм⁻¹; $r_1=8,000$; $r_2=4,382$; d=2; $n_{00}=1,6$; $n_{10}=-2,477\cdot10^{-2}$ мм⁻²; $S_{IVe}=8,575\cdot10^{-6}$, $S_{IVe}=1,665\cdot10^{-4}$.

			Таблица 2
ω,°	у', мм	Z'_m , MM	Z'_s , MM
-8,4301	3,000	-0,3561	-0,1191
-6,1239	2,121	-0,1816	-0,0607
0,0000	0,000	0,0000	0,0000

В табл. 3 приведены параметры линзы после оптимизации: конфигурация линзы — "отрицательный мениск": f=19,59 мм; заднее вершинное фокусное расстояние $s'_F = 16,273$ мм; $s_p=3,0$ мм; t = 0,165 мм⁻¹; $r_1=6,3736$; $r_2=4,044$; d=2; $n_{00}=1,6$; $n_{10}=-2,169\cdot10^{-2}$ мм⁻².

			Таблица 3
ω,°	у', мм	Z'_m , MM	Z'_s , MM
-8,3833	3,0	-0,0258	-0,0079
-6,0922	2,12	-0,0168	-0,0046
0,0000	0,00	0,0000	0,0000

Из табл. 3 видно, что исправлены третьи и высшие порядки астигматизма и кривизны поля изображения, $S_{IVe} = 3,355 \cdot 10^{-6}$, $S_{IVk} = 6,573 \cdot 10^{-5}$.

Пример 2. В табл. 4 приведены параметры исходной *двояковыпуклой* однородной линзы, и ее параксиальные характеристики: f' = 174,73 мм; $s'_F = 167,725$ мм; $s_p = 3,0$ мм; t = 0,000 мм⁻¹; $r_1 = 99,7800$; $r_2 = -674,008$; d = 12; $n_{00} = 1,5$; $n_{10} = 0,000$.

			Таблица 4
ω,°	у', мм	Z'_m , MM	Z'_s , MM
-3,1631	10,00	-1,008	-0,464
-2,1901	7,07	-0,505	-0,232
0,0000	0,00	0,0000	0,0000

Астигматические отрезки для края поля Z'_m , Z'_s имеют достаточно большую величину, $S_{IVe} = 0.03835$, $S_{IV\kappa} = 0.6701$.

В табл. 5 приведены параметры линзы после введения в показатель ПП градиента. Линза приобрела конфигурацию "отрицательный мениск", фокусное расстояние положительное: f' = 166,112 мм; $s'_F = 149,501$ мм; $s_p = 3,0$ мм; t = 0,02919 мм⁻¹; $r_1 = 99,78$; $r_2 = 32,818$; d = 12; $n_{00} = 1.5$; $n_{10} = -0,639 \cdot 10^{-3}$ мм⁻².

			Габлица 5
ω,°	у', мм	Z'_m , MM	Z'_s , MM
-3,2636	10,00	-0,849	-0,282
-2,2611	7,07	-0,426	-0,141
0,0000	0,00	0,000	0,000

Введение в ПП градиента позволило приблизительно на 20—40 % уменьшить астигматические отрезки; $S_{IVe} = 1,1278 \cdot 10^{-7}, S_{IV\kappa} = 1,874 \cdot 10^{-5}.$

В табл. 6 приведены конструктивные данные и астигматические отрезки градиентной линзы после оптимизации.

Параксиальные характеристики линзы: f' = 166,12 мм; $s'_F = 142,636$ мм; $s_p = 18,311$ мм; t = 0,025633 мм⁻¹; $r_1 = 41,693$; $r_2 = 25,178$; d = 12; $n_{00} = 1,5$; $n_{10} = -0,492 \cdot 10^{-3}$ мм⁻².

_				Габлица б
	ω,°	у', мм	Z'_m , MM	Z'_s , MM
Γ	-3,2630	10,00	0,0005	0,0001
Γ	-2,2609	7,07	-0,0006	-0,0001
Γ	0,0000	0,00	0,0000	0,0000

Астигматизм и кривизна поля исправлены, высшие порядки аберраций скомпенсированы третьими порядками; $S_{IVe} = 1,2362 \cdot 10^{-5}, S_{IV\kappa} = 2,054 \cdot 10^{-3}$.

Пример 3. Аберрационные параметры исходной однородной *отрицательной* двояковогнутой линзы приведены в табл. 7. Линза имеет характеристики: f' = -170,011 мм; $s'_F = -175,82$ мм; $s_p = 10,99$ мм; $S_{IVe} = -3,667 \cdot 10^{-3}$; $S_{IVk} = 0,6235$; t = 0,00 мм⁻¹; $r_1 = -109,75$; $r_2 = 1493,8$; d = 10; $n_{00} = 1,6$; $n_{10} = -0,000$ мм⁻².

			Таблица 7
ω,°	у', мм	Z'_m , MM	Z'_s , MM
3,2202	10,00	1,071	0,480
2,2254	7,07	0,536	0,240
0,0000	0,00	0,000	0,0000

Как видно из табл. 7, линза имеет достаточно большие положительные величины астигматических отрезков Z'_m , Z'_s .

Аберрационные характеристики линзы после введения градиента ПП приведены в табл. 8. Линза имеет характеристики: f' = -178,557 мм; $s'_F = -194,43$ мм; $s_p = 10,99$ мм; $S_{IVe} = -2,299 \cdot 10^{-7}$; $S_{IVe} = 4,1059 \cdot 10^{-5}$; t = 0,03275 мм⁻¹; $r_1 = -109,75$; $r_2 = -37,054$; d = 10; $n_{00} = 1,6$; $n_{10} = 0,8580 \cdot 10^{-3}$ мм⁻². Градиентная среда рассеивающего типа.

			Таблица 8
ω,°	у', мм	Z'_m , MM	Z'_s , MM
3,1224	10,00	0,208	0,0755
2,1604	7,07	0,101	0,0381
0,000	0,00	0,000	0,0000

Введение градиента ПП позволило почти в пять раз уменьшить астигматические отрезки Z'_m, Z'_s .

В табл. 9 приведены параметры линзы после оптимизации: f' = -178,563 мм; $s'_F = -179,302$ мм; $s_p = 47,495$ мм; $S_{IVe} = -2,1316\cdot10^{-3}$; $S_{IVK} = 0,3807$; t = 0,02701 мм⁻¹; $r_1 = 365,891$; $r_2 = 423,507$; d = 4,981; $n_{00} = 1,6$; $n_{10} = 0,5836\cdot10^{-3}$ мм⁻².

			Таолица 9
ω,°	у', мм	Z'_m , MM	<i>Z′s</i> , мм
3,1227	10,00	-0,0216	0,0645
2,1605	7,07	-0,0106	0,0325
0,000	0,00	0,000	0,000

Выводы. Аналитические формулы позволяют получить первичные конструктивные данные линзы с исправленной кривизной поля третьего порядка. Для исправления кривизны поля при конечных углах поля требуется численная оптимизация формы линзы на минимум астигматических отрезков.

Анализ показал, что радиальный градиент ПП в области конечных величин углового поля наиболее эффективен в менискообразных линзах.

Введение радиальной неоднородности показателя преломления собирающего или рассеивающего типов позволяет исправить в линзе третьи порядки аберрации кривизны поля, что расширяет возможности оптика-конструктора по коррекции остальных аберраций оптической системы третьего и высших порядков.

СПИСОК ЛИТЕРАТУРЫ

1. Слюсарев Г. Г. Методы расчета оптических систем. М.: Машиностроение, 1969. 550 с.

2. Волосов Д. С. Фотографическая оптика. Л.: Искусство, 1972. 650 с.

- 3. *Moore D. T., Salvage R. T.* Radial gradient-index lenses with zero Petzval aberration // Appl. Optics. 1980. Vol. 19, N 7. P. 1081—1086.
- 4. *Сушков А. Л.* Монохроматические аберрации граданов как базовых элементов жестких эндоскопов. Учеб. пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 44 с.

Сведения об авторе Александр Леонидович Сушков — канд. техн. наук, доцент; МГТУ им. Н. Э. Баумана; кафедра лазерных оптико-электронных систем; E-mail: ale-sushkov@yandex.ru

Рекомендована кафедрой лазерных оптико-электронных систем Поступила в редакцию 28.10.10 г.