УДК 53.072; 681.3 DOI: 10.17586/0021-3454-2015-58-11-915-919

АЛГОРИТМ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ОБНАРУЖЕНИЯ ВЫСОКОСКОРОСТНЫХ ОБЪЕКТОВ

А.В.ДЕМИН

Университет ИТМО, 197101, Санкт-Петербург, Россия E-mail: dav 60@mail.ru

Предложены алгоритм коррекции коэффициентов риска при наличии аддитивного гауссового шума и схема имитационного моделирования процесса обнаружения высокоскоростного летательного аппарата оптико-электронным детектором с целью выбора значений коэффициентов риска, обеспечивающих минимизацию ожидаемой величины потерь при использовании критерия Байеса.

Ключевые слова: оптико-электронный детектор, обнаружение, эффективность, алгоритм.

Принцип действия оптико-электронного детектора обнаружения летательных аппаратов (ОЭД_{ЛА}), входящего в состав оптико-электронного комплекса поиска и обнаружения, основан на регистрации изменения структуры облученности в зоне чувствительности детектора. В зависимости от структуры зоны чувствительности, одноэлементной или многоэлементной, алгоритмы регистрации изменения структуры облученности (ИСО) различны, но сам факт обнаружения летательного аппарата, особенно высокоскоростного, носит вероятностный характер. Под высокоскоростным объектом (ВсО) понимается любой объект, время пребывания которого в зоне чувствительности ОЭД_{ЛА} соизмеримо с временем регистрации ИСО, определяемым алгоритмом работы детектора и числом шагов накопления одной и той же структуры облученности [1—8]. Наиболее распространенным алгоритмом обнаружения ВсО является параллельно-последовательный, а в качестве решающего правила используется один из возможных критериев: Байеса, Неймана — Пирсона и др. [2, 3, 8]. Эффективность ОЭД_{ЛА} определяется не только его оптико-физическими параметрами, но и эффективностью алгоритма принятия решения.

В данном исследовании в основу алгоритма повышения эффективности обнаружения высокоскоростных объектов положен критерий Байеса. В соответствии с этим критерием алгоритм принятия решения о наличии BcO (H_0) в зоне чувствительности ОЭД или его отсутствии (H_1) строится на основе априорного распределения вероятностей относительно сравниваемых результатов наблюдений исходя из возможных четырех гипотез [2, 8]:

 $H_0 | H_0$ — правильное решение "да";

 $H_1|H_1$ — правильное решение "нет";

 $H_1|H_0, H_0|H_1$ — определенный "ответ" относительно истинности наличия цели в зоне чувствительности ОЭД дать нельзя, при этом

 $H_1 | H_0$ — ложная тревога;

 $H_0|H_1$ — пропуск цели.

С учетом значений априорных переходных вероятностей (P_0/P_1) и подпространств решений "да"/"нет" соответствующее соотношение имеет следующий вид [2, 8, 9]:

А. В. Демин

$$\begin{cases} \Re = C_{00}P_0 \int_{Z_0} B_0 dR + C_{10}P_0 \int_{Z_1} B_0 dR + C_{11}P_1 \int_{Z_1} B_1 dR + C_{01}P_1 \int_{Z_1} B_1 dR; \\ B_0 = p_{r|H_0} \left(R | H_0 \right); B_1 = p_{r|H_1} \left(R | H_1 \right); \\ \frac{B_1}{B_0} \stackrel{\stackrel{H_1}{\leq}}{\underset{H_0}{\leq}} \frac{P_0 \left(C_{10} - C_{00} \right)}{P_1 \left(C_{01} - C_{11} \right)} \Leftrightarrow \Lambda(R) \stackrel{\stackrel{H_1}{\leq}}{\underset{H_0}{\leq}} \eta \Rightarrow \ln\{\Lambda(R)\} \stackrel{\stackrel{H_1}{\leq}}{\underset{H_0}{\leq}} \ln(\eta), \end{cases}$$
(1)

где \Re — ожидаемая величина потерь; $\Lambda(R)$ — отношение правдоподобия; η — порог обнаружения; $p_{r|H_0}, p_{r|H_1}$ — значение априорной плотности вероятности решений "да"/"нет"; R — множество точек в пространстве наблюдений (регистрация каждого решения "да"/"нет"); $C_{00}, C_{10}, C_{11}, C_{01}$ — коэффициенты риска ("цена") принимаемого решения, при этом "цена" ошибочного решения (например, в случае $H_0|H_1$) может быть выше правильного [2].

На вероятность правильного обнаружения $H_0|H_0$ или $H_1|H_1$ влияет и назначение коэффициентов риска "ответа", правильность выбора которых повышает эффективность ОЭД_{ЛА} ($\Psi_{OЭД}$), определяемую соотношением

$$\Psi_{O \ni \mathcal{I}} = \frac{\mathfrak{R}_0 - \mathfrak{R}_{\nabla}}{\mathfrak{R}_0 + \mathfrak{R}_{\nabla}},\tag{2}$$

где \Re_0 — ожидаемая начальная величина потерь; \Re_{∇} — ожидаемая величина потерь после коррекции коэффициентов риска.

Имитационная модель процесса выбора коэффициентов риска в математической форме может быть представлена следующим соотношением [2, 8, 9, 10]:

$$\frac{\tilde{L}}{\sigma^{2}}\sum_{i=1}^{N}R_{i} - \frac{N(\tilde{L})^{2}}{2\sigma^{2}}\sum_{\substack{\leq \\ H_{0}}}^{H_{1}}\ln\eta;$$

$$(C_{11} - C_{00}) + (C_{01} - C_{11})P_{np} - (C_{10} - C_{00})P_{\pi} = 0,$$
(3)

где \tilde{L} — средняя облученность зоны чувствительности детектора; σ^2 — дисперсия n(t); $P_{\rm np}$ — вероятность пропуска BcO $\langle (H_0 \to H_1) \Rightarrow (C_{01} - C_{11}) \rangle$; $P_{\rm n}$ — вероятность ложной фиксации BcO $\langle (H_1 \to H_0) \Rightarrow (C_{10} - C_{00}) \rangle$; N — число шагов накопления решений "да"/"нет".

На рисунке *a*, *б* соответственно представлены алгоритм коррекции коэффициентов риска при наличии аддитивного гауссового шума и схема имитационного моделирования (ИМ) процесса обнаружения объекта детектором с целью выбора значений C_{00} , C_{10} , C_{11} , C_{01} , обеспечивающих минимизацию ожидаемой величины потерь. Схема ИМ содержит следующие блоки:

— средней облученности \tilde{L} зоны чувствительности детектора при известных оптикофизических параметрах детектора и BcO;

— ожидаемой величины потерь Я;

— вариации отношения правдоподобия $\ln{\{\Lambda(R)\}}$ путем вариации коэффициентов $C_{00}, C_{10}, C_{11}, C_{01};$

— ожидаемого порога обнаружения $ln(\eta)$.

Поскольку принятие решений "да"/"нет" есть результат параллельно-последовательных событий, регистрируемых реальным ОЭД_{ЛА}, то для синхронизации всех событий и выполнения алгоритмов имитации (Алг_i) введена переменная M_{t_i} , называемая модельным (системным)

временем (см. рисунок, б). При реализации схемы имитационного моделирования процесса обнаружения воспользуемся следующим представлением модельного времени [2, 10]:

 M_{t_R} — реальное время имитации;

*M*_{t0} — модельное время синхронизации событий;

*М*_{*t*_{*ii*}} — машинное время имитационного моделирования.

Корректировка временных координат t_i для нескольких блоков схемы ИМ осуществляется с помощью переменной M_{t_0} . В случае совпадения значений t_i реализуются $\{Aлr_i\}_j$ нескольких блоков (т.е. ОЭД_{ЛА} регистрирует одновременно несколько реальных событий). Тем самым последовательно обслуживаются $\{Aлr_i\}_j$, совпадающие по одинаковому времени выполнения, но при этом M_{t_0} не изменяется до окончания реализации этих алгоритмов. Таким образом, выполняется последовательность функциональных действий, осуществляемых ОЭД_{ЛА}, которые и являются объектом имитации, при этом каждая стадия функционального действия характеризуется номером j, а возможные вариации номером i. Корректировка временной координаты сводится к вычислению нового значения $M_{t_{ij}}$ по формуле $M_{t_{ij}} = M_{t_0} + \tau_{ij}$, которое используется в дальнейшем для определения момента новой активизации имитационной модели блока.

Вариация значений средней облученности \tilde{L} выполнялась для одного шага накопления. В рассматриваемом случае соотношение для \tilde{L} следует представить как среднее значение из N шагов накопления решений "да"/"нет", например, в соответствии с методикой [4]:

$$\tilde{L} = \frac{1}{N} \sum_{1}^{N} \left\langle t_{\min} \upsilon \frac{\langle \rho \rangle S_{a\pi}}{f^2} \cos^4 \beta \int_{\Delta \lambda} \left\{ K_s(\lambda) K_r(\lambda) \left[\frac{1}{\pi} E_z(\lambda, h_{\rm S}) \upsilon_{a\rm TM}^{1/\cos\beta}(\lambda) + B_{\mu}(\lambda, h_{\rm S}, \psi) \right] \right\} d\lambda \right\rangle.$$
(4)

Оптико-электронный детектор имеет следующие параметры (в том числе, принятые в соотношении (4): t_{\min} — минимально необходимое время действия облученности для получения одного отсчета (1,46 мс); N = 7; υ — интегральный коэффициент пропускания оптики (0,8); $\Delta\lambda$ — регистрируемый спектральный ИК-диапазон; $K_s(\lambda)$ — спектральный коэффициент пропускания оптики (максимальное значение 0,9); $K_r(\lambda)$ — спектральная чувствительность детектора (0,1 Вт/м²); — среднее альбедо плоскости объекта (0,8); $E_z(\lambda, h_S)$ — спектральный коэффициент пропускания атмосферы для трассы наблюдения (0,87); $B_{\mu}(\lambda, h_S, \psi)$ — спектральная яркость атмосферной дымки, зависящая от высоты Солнца и угла между плоскостью визирования и плоскостью солнечной вертикали (минимально допустимое значение

1,2·10⁻⁴ Вт/м²); β — угол между линией визирования и вертикалью (4,5°); S_{an} — площадь действующей апертуры ОЭД (0,03 м²); f — фокусное расстояние объектива (0,19 м); ε_{BcO} — коэффициент, характеризующий ВсО как АЧТ (0,7); 2 ω — угловое поле ОЭД (2,5°).

Обнаружение BcO в зоне чувствительности ОЭД_{ЛА} приводит к изменению структуры облученности спектрального состава зоны. Любой объект (в том числе, и BcO) является источником излучения, и практически до 70 % излучения сосредоточено в диапазоне от 0,85 $\varepsilon_{BcO}\lambda_{max}$ до 1,15 $\varepsilon_{BcO}\lambda_{max}$, где λ_{max} — длина волны излучения, при которой энергия абсолютно черного тела максимальна. В процессе моделирования величины \tilde{L} оптикофизические параметры ОЭД и фона, приведенные выше в скобках, не изменялись.

Имитационное моделирование проводится при условии, что значения априорных плотностей вероятности решений "да"/, нет" подчиняются закону равной вероятности, и соответственно $C_{00} = C_{11}$, тогда имитационная модель ожидаемых потерь для ОЭД_л имеет вид

$$\Re_{0,5} = 0.5 \left\{ \left(C_{10} + C_{11} \right) + \left(C_{00} - C_{10} \right) \int_{Z_0} B_0 dR + \left(C_{01} - C_{11} \right) \int_{Z_0} B_1 dR \right\},$$

$$(5)$$

В результате компьютерного моделирования установлено, что значение $\Re_{\nabla} = \min \{\Re_{0,5}\}$ достигается при выполнении условия $C_{01} - 2C_{10} = C_{11}$.

Особенности динамики и кинематики полета ВсО накладывают ограничение на число наблюдений, необходимых для принятия решения об обнаружении, но обязательное число отсчетов — $N \ge 3$. В этой связи для повышения достоверности принимаемого решения целесообразно в соотношениях (3) коэффициент риска пропуска цели C_{01} , учитывающий спектрально-энергетическую модель ВсО, определять в соответствии со следующим выражением [11]:

$$C_{01} = 1 - I/\hat{I} = 1 - (2898/\lambda_{\text{max}})^4 T^{-4},$$
(6)

где I — облученность входного зрачка ОЭД, создаваемая ВсО; \hat{I} — интегральная сила излучения ВсО; T — температура ВсО.

В результате проведенных исследований предложен алгоритм коррекции коэффициентов риска при наличии аддитивного гауссового шума и разработана схема имитационного моделирования процесса обнаружения оптико-электронным детектором высокоскоростного объекта с целью выбора коэффициентов $C_{00}, C_{10}, C_{11}, C_{01}$, обеспечивающих минимизацию ожидаемой величины потерь при использовании критерия Байеса. Практическая реализация алгоритма в оптико-цифровой системе обнаружения высокоскоростных летательных аппаратов позволила повысить эффективность при выборе правильноых решений "да"/,,нет" на 12 % [12]. Предложенные алгоритм и имитационная модель справедливы и для критерия Неймана — Пирсона.

СПИСОК ЛИТЕРАТУРЫ

- 1. Астапов Ю. М., Васильев Д. В., Заложнев Ю. И. Теория оптико-электронных следящих систем. М.: Наука, 328 с.
- 2. Ван Трис Г. Теория обнаружения, оценок и линейной модуляции: Пер. с англ. М.: Сов. радио, 1972.
- 3. Горелик А. Л., Барабаш Ю. Л., Кривошеев О. В., Эпштейн С. С. Селекция и распознавание на основе локационной информации. М.: Радио и связь, 1990. 240 с.
- 4. Красильников Н. Н. Теория передачи и восприятия изображений. М.: Радио и связь, 1986. 248 с.

))

- 5. *Креков Г. М., Кавкянов С. П., Крекова М. М.* Интерпретация сигналов оптического зондирования атмосферы. Новосибирск: Наука, 1987.
- 6. *Тарасов В. В., Якушенков Ю. Г.* Современные проблемы инфракрасной техники. М.: Изд-во МИИГАиК, 2011. 84 с.
- 7. Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы "смотрящего" типа. М.: Логос, 2004. 444 с.
- Бакут П. А., Жулина Ю. В., Иванчук Н. А. Обнаружение движущихся объектов / Под ред. П. А. Бакута. М.: Сов. радио, 1980. 288 с.
- 9. *Тяжев А. И.* Оптимизация цифровых детекторов в приемниках по минимуму вычислительных затрат / Поволж. ин-т информатики, радиотехники и связи. Самара, 1994.
- 10. Демин А. В., Копорский Н. С. Имитационное моделирование информационно-измерительных и управляющих систем. СПб: СПбГУ ИТМО, 2007. 139 с.
- 11. Демин А. В., Лосев С. В. Алгоритм управления коэффициентами риска теплопеленгатора // Вопр. радиоэлектроники. Сер. Техника телевидения. 2014. Вып. 2. С. 94.
- 12. Демин А. В., Сорокин А. В., Гордеев Д. М., Белянский М. А., Птицына А. С., Шалковский А. Г., Чуриков А. Б., Смолин А. С. Авиационный теплопеленгатор // Изв. вузов. Приборостроение. 2011. Т. 54, № 5. С. 93—98.

Анатолий Владимирович Демин

Сведения об авторе д-р техн. наук, профессор; Университет ИТМО; кафедра оптикоцифровых систем и технологий; E-mail: dav 60@mail.ru

Рекомендована кафедрой оптико-цифровых систем и технологий

Поступила в редакцию 31.08.15 г.

Ссылка для цитирования: Демин А. В. Алгоритм повышения эффективности обнаружения высокоскоростных объектов // Изв. вузов. Приборостроение. 2015. Т. 58, № 11. С. 915—919.

ALGORITHM TO IMPROVE THE EFFICIENCY OF HIGH-SPEED OBJECT DETECTION

A. V. Demin

ITMO University, 197101, St. Petersburg, Russia E-mail: dav_60@mail.ru

A scheme of imitation modeling of the process of high-speed aircraft detection with opticalelectronic detector and an algorithm for correction of risk factors in the presence of additive Gauss noise are proposed. The approach provides minimization of expected loss value according to the Bayes criterion due to the optimal choice of the risk factors.

Keywords: optical-electronic detector, detection, efficiency, algorithm.

Data on author

Dr. Sci., Professor; ITMO University, Department of Optical and Digital Sys-

Anatoly V. Demin —

 tems and Technologies; E-mail: dav_60@mail.ru

 For citation: Demin A. V. Algorithm to improve the efficiency of high-speed object detection // Izvestiya

Vysshikh Uchebnykh Zavedeniy. Priborostroenie. 2015. Vol. 58, N 11. P. 915-919 (in Russian).

DOI: 10.17586/0021-3454-2015-58-11-915-919