## С. В. КУЛЕШОВ

## МЕТОД 3D-КОМПРЕССИИ ДАННЫХ РЕНТГЕНОВСКОЙ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ

Предлагается алгоритм компрессии данных компьютерной томографии для создания банков данных томографических исследований и телемедицины. Приводятся схема построения компрессора/декомпрессора и результаты экспериментальной оценки его эффективности.

**Ключевые слова:** компрессия данных, кодек, компьютерная томография, 3D-данные.

**Введение.** Современная томография базируется на использовании серии слоев объекта (двумерных измерений, сделанных под различными углами), позволяющих определить его трехмерную структуру. Такой тип данных может быть сформирован с использованием различного оборудования, в том числе рентгеновских систем и электронных микроскопов.

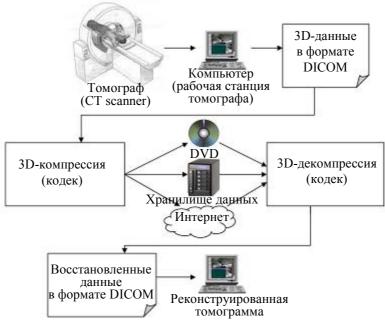
Одним из наиболее распространенных видов томографических данных являются данные компьютерной томографии, полученные в результате исследований, проводимых на рентгеновском томографе. В типичном случае такие данные представляют собой набор томограмм (слоев)

общим числом до нескольких сотен, при этом каждая томограмма является полутоновым изображением, целочисленные значения яркости точек которого соответствуют относительным плотностям тканей в плоскости сканирования (в единицах Хаунсфилда) [1]. Пример томограммы (одного слоя) приведен на рис. 1. Томографические данные одного исследования, полученные на современных сканерах, могут иметь объем в несколько гигабайт [2].



Puc. 1

Обеспечить долгосрочное хранение (архивирование) и передачу томографических данных, а также удаленный доступ к ним можно путем компрессии (сжатия) данных. Имеющиеся алгоритмы и реализованные на их основе программы ориентированы главным образом на сжатие изображений типа цветных фотографий и не могут быть эффективно использованы для сжатия изображений типа томограмм. Наибольшее распространение получили алгоритмы сжатия цветных изображений с потерями (стандарт JPEG), но эта группа алгоритмов в принципе не применима к задачам, в которых требуется обеспечить сжатие без потерь. Сжатие без потерь может быть осуществлено в рамках стандарта JPEG2000, однако алгоритмы, реализующие этот стандарт, не являются томографически-ориентированными, не учитывают специфику томографических данных и, как следствие, не могут обеспечить высокий коэффициент сжатия и необходимые функциональные свойства.


Все сказанное означает, что задача разработки эффективных методов и алгоритмов сжатия томографических данных является в высшей степени актуальной. Большинство известных методов компрессии объемных томографических данных основаны на реконструкции объемного представления как серии двумерных массивов, причем обработка каждого двумерного массива производится независимо, что ведет к нарушению связности локальных областей. Так, например, методы, разработанные в Институте проблем передачи информации РАН (Москва) [3], основаны на дискретном вейвлет-преобразовании, применяемом к каждому срезу, и обеспечивают компрессию в 1,9—3,0 раз.

В ряде известных алгоритмов процедура сжатия осуществляется за счет устранения корреляционной зависимости между последовательными двумерными массивами (слоями). Так, существуют примеры комплексного подхода к передаче биологических данных [2], основанного на использовании совокупности различных методов (реконструкции объекта, использовании форматов MPEG, использовании распределенных сервисов и др.)

Здесь следует отметить, что для медицинских исследований требуется сохранение локальных особенностей данных. Обработка многомерных данных в виде плоскостного послойного сканирования массивов не обеспечивает трехмерной связности (не обеспечивается изотропия многомерных данных). Соответственно потенциально более эффективными являются методы, основанные на сохранении локальных особенностей данных (обеспечивающие трехмерную связность данных).

**Описание метода.** На общей схеме обработки томографических данных (рис. 2) показано место компрессора/декомпрессора (кодека) в потоке данных, получаемых с использованием

компьютерного томографа. Кодек не зависит от аппаратной составляющей сканера, так как реализует стандартный формат данных DICOM, который поддерживается основными производителями медицинского оборудования и медицинского программного обеспечения.



Puc. 2

Реализация предлагаемого метода компрессии осуществляется по схеме, сходной с форматом True3D Vision [4]. Метод основан на разбиении трехмерного (3D) пространства томографических данных (объединенной последовательности срезов) на равные элементы, состоящие из  $N \times N \times N$  точек, при этом компрессия каждого из элементов осуществляется независимо (рис. 3); N может быть иметь значения 4, 8, 16 в зависимости от реализуемого алгоритма, что влияет на степень компрессии и скорость обработки данных.



Puc. 3

На первом этапе выполняется нормализация данных (здесь используется терминология, принятая в работе [5]), т.е. преобразование данных, характеризуемое следующими свойствами:

- возможностью взаимно-однозначного обратного восстановления;
- способностью к квантованию (загрублению некоторых элементов пространства данных, т.е. уменьшению количества различимых состояний элемента, или их исключению в целях уменьшения битового объема);
- получением данных, обладающих способностью к компрессии, с использованием методов вторичного сжатия [6].

В качестве алгоритмов нормализации могут быть использованы ассоциативно-пирамидальная развертка [7], многомерное дискретное косинусное преобразование [6] и ряд других алгоритмов, обладающих указанными свойствами.

Этап квантования повышает степень компрессии данных в случае, если задача допускает сжатие с потерями [5] (при компрессии томографических данных это приводит к появлению дополнительных артефактов на изображении). Квантование позволяет представить данные с минимально достаточной точностью, которая обеспечивает требуемый уровень качества изображения.

После этапов нормализации и квантования с помощью алгоритмов вторичного сжатия осуществляется компрессия полученных данных. Экспериментально были апробированы алгоритмы Хаффмана, арифметического кодирования, кодирования длинных последовательностей (RLE) и алгоритм сжатия на основе терминальных программ [8].

Наилучшие результаты были получены при следующей схеме построения кодека:

- размер элемента 3D-пространства данных:  $16 \times 16 \times 16$  (в случае необходимости увеличения скорости вычисления рекомендуется использовать элементы  $8 \times 8 \times 8$ );
- алгоритм нормализации данных: трехмерное дискретное косинусное преобразование (3D DCT) с последующей разверткой с использованием зигзаг-сканирования;
  - *квантование*: подбирается экспериментально в соответствии с конкретной задачей;
  - вторичное сжатие: арифметическое кодирование.

Сжатая битовая последовательность может быть дополнена маркерами, обозначающими каждый из элементов, что увеличивает помехозащищенность при передаче томографических данных в телемедицине (в случае ошибки будет утерян только единичный элемент размером  $N \times N \times N$  ).

В связи с тем, что изменение параметров изображения (например, контрастности) при работе с томограммой уменьшает информационную емкость данных (сокращает количество различимых состояний), для минимизации вносимых искажений используются исходные данные, полученные непосредственно со сканера.

Предварительная оценка степени компрессии для данных, полученных с использованиием мультисрезовой компьютерно-томографической системы Toshiba Aquilion 64, при изменении уровня квантования (количества вносимых артефактов) от минимального до максимального показала возможность компрессии от 10 до 120 раз. Данные, использованные в ходе исследования, были получены при следующих параметрах сканирования: 300 мА, 120 кВ, толщина слоя 3 мм, время экспозиции 0,3 с, поле реконструкции (FOV) 25,4×25,4 см.

**Заключение.** В настоящее время созданы и очень быстро пополняются многочисленные банки данных томографических исследований, широко используемых в медицине для диагностики, планирования лечения и т.д.

Предложенный метод позволяет производить сжатие томографических данных с динамическим управлением степенью компрессии, что обеспечивает высокую скорость получения предварительных данных, а при необходимости — дополнительную передачу выбранной области изображения с исходным качеством (без применения этапа квантования) во избежание возможного влияния артефактов на постановку диагноза.

Создание централизованных банков данных затруднено в связи с несоразмерностью объема дисковых накопителей и количеством пациентов. В лучшем случае данные томографического обследования выдаются пациенту в виде DVD-диска, а в худшем удаляются после постановки диагноза. Для наблюдения динамики состояния пациента при лечении требуется сравнение данных обследований, сделанных в различное время. С этой целью возможность ведения централизованного банка данных томографических исследований (даже при компрессии с потерями) является весьма перспективной.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Марусина М. Я., Казначеева А. О.* Современные виды томографии: Учеб. Пособие. СПб: СПбГУ ИТМО, 2006. 132 с.
- 2. *Insley J., Laszewski G., Kesselman C., Thiebaux M.* Distance visualization: data exploration on the grid // Computer. 1999. N 12. P. 36—43.
- 3. *Сушко Д. В., Штарьков Ю. М.* О сжатии томографических данных // Информационные процессы. 2008. Т. 8, № 4. С. 240—255.

- 4. *Кулешов С. В.* Формат представления реальных трехмерных сцен для объемного телевидения (True3D Vision) // Информационно-измерительные и управляющие системы. 2009. Т. 7, № 4. С. 49—52.
- 5. Александров В. В., Кулешов С. В., Цветков О. В. Цифровая технология инфокоммуникации. Передача, хранение и семантический анализ текста, звука, видео. СПб: Наука, 2008. 244 с.
- 6. *Кулешов С. В.* Пространственно-временное представление, обработка и компрессия видеопотока // Информационно-измерительные и управляющие системы. 2008. Т. 6, № 4. С. 33—37.
- 7. *Кулешов С. В., Зайцева А. А., Аксенов А. Ю.* Ассоциативно-пирамидальное представление данных // Там же. 2008. Т. 6, № 4. С. 14—17.
- 8. *Александров В. В., Кулешов С. В.* Этерификация и терминальные программы // Там же. 2008. Т. 6, № 10. С. 50—53.

## Сведения об авторе

Сергей Викторович Кулешов

 канд. техн. наук; Санкт-Петербургский институт информатики и автоматизации РАН, лаборатория автоматизации научных исследований; ст. науч. сотрудник; E-mail: kuleshov@iias.spb.su

Рекомендована СПИИРАН

Поступила в редакцию 31.03.10 г.