УДК 623.396.969.3

А. С. БАЧЕВСКИЙ, В. А. ШАТАЛОВА

АЛГОРИТМ ОПТИМАЛЬНОГО ОБНАРУЖЕНИЯ НЕГАУССОВЫХ УЗКОПОЛОСНЫХ СЛУЧАЙНЫХ СИГНАЛОВ

Рассматривается синтез алгоритма оптимального обнаружения негауссова узкополосного случайного сигнала, принимаемого на фоне помех, и анализ его статистических характеристик.

Ключевые слова: случайный процесс, плотность распределения вероятностей, сигналы, помехи.

Введение. Для осуществления оптимального статистического синтеза систем обнаружения негауссовых узкополосных случайных процессов при наличии помех необходимо определить совместные условные плотности распределения вероятностей (ПРВ) выборок случайных величин по каждой из проверяемых гипотез [1].

Задача обнаружения сигналов при наличии помех, когда и те, и другие подчиняются гауссову распределению вероятностей, рассмотрена в работах [2, 3].

Натурные эксперименты, проведенные отечественными и зарубежными специалистами, показали, что случайные амплитуды принимаемых сигналов и помех подчиняются рэлеевскому, вейбулловскому, логарифмически нормальному или *m*-распределению (Накагами), а фазы являются равномерно распределенными случайными величинами [4]. Если случай рэлеевского распределения хорошо известен [1—4], то три других в настоящее время значительно менее изучены, так как и одномерные, и многомерные плотности распределения вероятностей таких сигналов не были описаны вплоть до появления работы [5].

Цель настоящей статьи — синтез алгоритма оптимального обнаружения негауссова узкополосного случайного сигнала, принимаемого на фоне помех, и анализ его статистических характеристик.

Алгоритм обнаружения узкополосного сигнала с нерэлеевской амплитудой и равномерно распределенной фазой. Постановка задачи обнаружения традиционная и формулируется как проверка двух гипотез

$$H_0: \ \xi(t) = n(t); H_1: \ \xi(t) = n(t) + s(t),$$
(1)

где n(t) — случайный процесс (помеха), представляющий собой белый гауссов шум (БГШ), ПРВ и числовые характеристики которого равны соответственно

$$p\left[\xi_{i} | H_{0}\right] = p\left(n_{i}\right) = \left(\sqrt{2\pi} \cdot \sigma\right)^{-1} \exp\left(-\frac{n_{i}^{2}}{2\sigma^{2}}\right);$$

$$M\left[n_{i}(t)\right] = 0, \ M\left[n_{i}^{2}(t)\right] = \sigma^{2},$$
(2)

где $M[\cdot]$ — означает операцию вычисления математического ожидания выражения, находящегося в квадратных скобках; s(t) — полезный сигнал, представляющий собой случайный процесс (СП); *i* — номер выборки помехи.

Будем считать, что СП s(t) можно представить в виде

$$s(t) = vf(t-\tau)\sin(\omega_0 t + \varphi), \qquad (3)$$

где v — амплитуда сигнала — случайная величина, распределенная по одному из указанных выше законов; ω_0 — несущая частота колебания; f(t) — огибающая сигнала; τ — задержка сигнала; ϕ — фаза — случайная величина, ПРВ которой равна

$$p(\varphi) = \begin{cases} 0, & -\infty < \varphi < -\pi; \\ (2\pi)^{-1}, & -\pi < \varphi < \pi, \\ 0, & \pi < \varphi < \infty. \end{cases}$$

Последовательно рассмотрим решение задачи обнаружения для указанных выше законов, которые соответствуют случаю медленно флуктуирующих негауссовых узкополосных сигналов, принимаемых на фоне БГШ, а затем обобщим результаты решения для случая, когда v(t) — случайный процесс с дискретным временем.

Вариант 1. Случайная величина v распределена по вейбулловскому закону. Используя правила нахождения ПРВ функционально преобразованных случайных величин, получаем для s(t), определяемого формулой (3), следующее выражение:

$$p(\zeta) = c\alpha\beta\zeta^{\alpha-1}\exp(-\beta\zeta^{\alpha})\frac{1}{2\pi}\int_{-1+\varepsilon}^{1-\varepsilon}\frac{1}{\sqrt{1-y^2}}\left(\frac{1}{y}\right)^{\alpha}\exp\left(-\beta\zeta^{\alpha}\left(\frac{1-y}{y}\right)^{\alpha}\right)dy,$$
(4)

где а и β — параметры,

$$c = \left(\frac{\alpha\beta}{\pi}\int_{0}^{\infty}\zeta^{\alpha-1}\exp(-\beta\zeta^{\alpha})\frac{1}{2}\int_{-1+\varepsilon}^{1-\varepsilon}\frac{1}{\sqrt{1-y^{2}}}\left(\frac{1}{y}\right)^{\alpha}\exp\left(-\beta\zeta^{\alpha}\left(\frac{1-y}{y}\right)^{\alpha}\right)dyd\zeta\right)^{-1}$$

Сомножитель $\alpha\beta\zeta^{\alpha-1}\exp(-\beta\zeta^{\alpha})$ является вейбулловской ПРВ, которая определена при $\zeta \ge 0$. При $\alpha = 1$ она совпадает с показательным распределением, при $\alpha = 2$ — с распределением Рэлея. Во избежание путаницы ПРВ (4) будем называть модифицированной вейбулловской ПРВ (МПРВ).

Поскольку прием сигнала, подчиняющегося МПРВ описанного выше типа, осуществляется на фоне белого гауссова шума, аддитивная модель сигнала и шума должна характеризоваться сверткой двух ПРВ, подчиняющихся гауссовой ПРВ (2) и вейбулловской МПРВ (4). Полученная ПРВ соответствует условной ПРВ случайного процесса $\xi(t) = n(t) + s(t)$ в случае истинной гипотезы H_1 . Для скалярных $n_i(t)$ и $s_i(t)$ ПРВ определяется выражением [5]

$$p(\xi_{i}|H_{1}) = c \frac{1}{\sqrt{2\pi \cdot \sigma}} \frac{\alpha\beta}{\pi} \int_{-\infty}^{\infty} z^{\alpha-1} \exp\left(-\frac{(\xi_{i}-z)^{2}}{2\sigma^{2}} - \beta z^{\alpha}\right) \times \frac{1}{2} \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y^{2}}} \left(\frac{1}{y}\right)^{\alpha} \exp\left(-\beta z^{\alpha} \left(\frac{1-y}{y}\right)^{\alpha}\right) dy dz.$$
(5)

Данное выражение следует преобразовать к виду

$$p(\xi_i | H_1) = \frac{c}{\sqrt{2\pi} \cdot \sigma} \exp\left(-\frac{\xi_i^2}{2\sigma^2}\right) \frac{\alpha\beta}{\pi} \int_{-\infty}^{\infty} z^{\alpha-1} \exp\left(-\frac{-2\xi_i z + z^2}{2\sigma^2} - \beta z^{\alpha}\right) \times \frac{1}{2} \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y^2}} \left(\frac{1}{y}\right)^{\alpha} \exp\left(-\beta z^{\alpha} \left(\frac{1-y}{y}\right)^{\alpha}\right) dy dz.$$
(6)

Используя формулы (2) и (6), получаем выражение для отношения правдоподобия:

$$\Lambda[\xi_i] = \frac{p(\xi_i | H_1)}{p(\xi_i | H_0)} = c \frac{1}{2} \frac{\alpha \beta}{\pi} \int_{-\infty}^{\infty} z^{\alpha - 1} \exp\left(-\frac{-2\xi_i z + z^2}{2\sigma^2} - \beta z^{\alpha}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1 - y^2}} \left(\frac{1}{y}\right)^{\alpha} \exp\left(-\beta z^{\alpha} \left(\frac{1 - y}{y}\right)^{\alpha}\right) dy dz .$$
(7)

Если $\Lambda[\xi_i] \ge \gamma$, где γ — порог обнаружения сигнала, принимается решение о его наличии на фоне БГШ, если $\Lambda[\xi_i] < \gamma$, принимается решение об отсутствии сигнала.

Пользоваться на практике выражением (7) крайне неудобно. Поэтому следует его преобразовать, используя разложение экспоненты в степенной ряд:

$$\exp\left(-\xi_{i}\left(\frac{z}{\sigma^{2}}\right)\right) = 1 - \frac{\xi_{i}\left(\frac{z}{\sigma^{2}}\right)}{1!} + \frac{\xi_{i}^{2}\left(\frac{z}{\sigma^{2}}\right)^{2}}{2!} - \frac{\xi_{i}^{3}\left(\frac{z}{\sigma^{2}}\right)^{3}}{3!} + \frac{\xi_{i}^{4}\left(\frac{z}{\sigma^{2}}\right)^{4}}{4!} - \dots$$
(8)

Подставляя выражение (8) в формулу (7), находим

$$\Lambda[\xi_{i}] = \sum_{k=0}^{\infty} \xi_{i}^{k} c \frac{1}{2} \frac{\alpha \beta}{\pi} \int_{-\infty}^{\infty} z^{\alpha-1} \left(\frac{z}{\sigma^{2}}\right)^{k} (k!)^{-1} \exp\left(-\left(\frac{z^{2}}{2\sigma^{2}} + \beta z^{\alpha}\right)\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y^{2}}} \left(\frac{1}{y}\right)^{\alpha} \exp\left(-\beta z^{\alpha} \left(\frac{1-y}{y}\right)^{\alpha}\right) dy dz.$$
(9)

Обозначив

$$\rho_{k} = c \frac{1}{2} \frac{\alpha \beta}{\pi} \int_{-\infty}^{\infty} z^{\alpha - 1} \left(\frac{z}{\sigma^{2}} \right)^{k} (k!)^{-1} \exp\left(-\left(\frac{z^{2}}{2\sigma^{2}} + \beta z^{\alpha} \right) \right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y^{2}}} \left(\frac{1}{y} \right)^{\alpha} \exp\left(-\beta z^{\alpha} \left(\frac{1-y}{y} \right)^{\alpha} \right) dy dz ,$$

получим следующий вариант записи отношения правдоподобия в виде полинома:

$$\Lambda[\xi_i] = \sum_{k=0}^{\infty} \rho_k \xi_i^k \stackrel{\geq}{<} \gamma.$$
⁽¹⁰⁾

Вариант 2. Случайная величина v распределена по логарифмически нормальному закону. Используя правила нахождения ПРВ функционально преобразованных случайных величин, получаем для s(t)

$$p(\zeta) = c \frac{1}{\sigma \zeta \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (\ln \zeta - \alpha)^2\right) \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y^2}} \exp\left(-\frac{1}{\sigma^2} \ln y \left(1 - (\ln \zeta - \alpha)\right)\right) dy, \quad (11)$$

где

$$\mathcal{C} = \left(\sigma\zeta\sqrt{2\pi}\right) \left(\int_{0}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}\left(\ln\zeta - \alpha\right)^{2}\right) \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y^{2}}} \exp\left(-\frac{1}{\sigma^{2}}\ln y\left(1-\left(\ln\zeta - \alpha\right)\right)\right) dyd\zeta\right)^{-1}$$

Определяющими параметрами являются $-\infty < \alpha < \infty$ и σ. Во избежание путаницы ПРВ (11) будем называть модифицированной ПРВ по логарифмически нормальному закону.

Свертка двух ПРВ, подчиняющихся логарифмически нормальной МПРВ (11) и гауссовой ПРВ (2), определяется формулой

$$p(\xi_{i}|H_{1}) = c \frac{1}{2\pi\sigma^{2}} \int_{-\infty}^{\infty} \frac{1}{\nu} \exp\left(-\frac{1}{2\sigma^{2}} (\ln\nu - \alpha)^{2}\right) \exp\left(-\frac{(\xi_{i} - \nu)^{2}}{2\sigma^{2}}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-\gamma^{2}}} \exp\left(-\frac{1}{\sigma^{2}} \ln y \left(1 - (\ln\nu - \alpha)\right)\right) dy d\nu.$$
(12)

Представим выражение (12) в удобном для дальнейших преобразований виде:

$$p(\xi_{i}|H_{1}) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left(-\frac{\xi_{i}^{2}}{2\sigma^{2}}\right) c \frac{1}{\sqrt{2\pi} \cdot \sigma} \int_{-\infty}^{\infty} \frac{1}{\nu} \exp\left(-\frac{1}{2\sigma^{2}} (\ln\nu - \alpha)^{2}\right) \exp\left(-\frac{-2\nu\xi_{i} + \nu^{2}}{2\sigma^{2}}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-\gamma^{2}}} \exp\left(-\frac{1}{\sigma^{2}} \ln \gamma (1 - (\ln\nu - \alpha))\right) dy d\nu.$$
(13)

Используя формулы (2) и (13), получаем выражение для отношения правдоподобия:

$$\Lambda[\xi_i] = \frac{c}{\sqrt{2\pi} \cdot \sigma} \int_{-\infty}^{\infty} \frac{1}{\nu} \exp\left(-\frac{1}{2\sigma^2} (\ln \nu - \alpha)^2\right) \exp\left(\frac{\nu\xi_i}{\sigma^2}\right) \exp\left(-\frac{\nu^2}{2\sigma^2}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-\gamma^2}} \exp\left(-\frac{1}{\sigma^2} \ln \gamma (1-(\ln \nu - \alpha))\right) dy d\nu,$$
(14)

которое с помощью разложения в степенной ряд можно записать в виде полинома:

$$\Lambda[\xi_{i}] = \sum_{k=0}^{\infty} \xi_{i}^{k} c \frac{1}{\sqrt{2\pi} \cdot \sigma} \int_{-\infty}^{\infty} \frac{1}{\nu} \left(\frac{\nu}{\sigma^{2}}\right)^{k} (k!)^{-1} \exp\left(-\frac{1}{2\sigma^{2}} (\ln\nu - \alpha)^{2} - \frac{\nu^{2}}{2\sigma^{2}}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-\nu^{2}}} \exp\left(-\frac{1}{\sigma^{2}} \ln\nu (1-(\ln\nu - \alpha))\right) dy d\nu = \sum_{k=0}^{\infty} \nu_{k} \xi_{i}^{k} \lesssim \gamma,$$
(15)

где

$$\upsilon_{k} = c \frac{1}{\sqrt{2\pi} \cdot \sigma} \int_{-\infty}^{\infty} \frac{1}{\nu} \left(\frac{\nu}{\sigma^{2}} \right)^{k} (k!)^{-1} \exp\left(-\frac{1}{2\sigma^{2}} (\ln \nu - \alpha)^{2} - \frac{\nu^{2}}{2\sigma^{2}} \right)$$
$$\times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-\gamma^{2}}} \exp\left(-\frac{1}{\sigma^{2}} \ln \gamma (1-(\ln \nu - \alpha)) \right) dy d\nu.$$

Если $\Lambda[\xi_i] \ge \gamma$, принимается решение о наличии сигнала на фоне БГШ, если $\Lambda[\xi_i] < \gamma$ — об его отсутствии.

Вариант 3. Случайная величина v распределена по *т*-закону (Накагами). Используя правила нахождения ПРВ функционально преобразованных случайных величин, получаем для s(t)

$$p(\zeta) = c \frac{2c}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m \zeta^{2m-1} \exp\left(-\frac{m}{\sigma^2}\zeta^2\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \exp\left(-\frac{m}{\sigma^2}\zeta^2\left(\frac{1}{y^2}-1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^2}}\right) dy,$$
(16)

где

X

$$c = \left[\frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m \int_{-\infty}^{\infty} \zeta^{2m-1} \exp\left(-\frac{m}{\sigma^2} \zeta^2\right) \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \exp\left(-\frac{m}{\sigma^2} \zeta^2 \left(\frac{1}{y^2} - 1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^2}}\right) dy \right]^{-1};$$

m и σ — определяющие параметры, $m \ge 0,5$; $\Gamma(m)$ — гамма-функция Эйлера, определяемая выражением $\Gamma(m) = \int_{0}^{\infty} y^{m-1} e^{-y} dy$. Во избежание путаницы ПРВ (16) будем называть модифи-

цированной ПРВ по *т*-закону (Накагами).

Свертка ПРВ (16) и (2) определяется формулой [5]

$$p(\xi_i | H_1) = c \frac{1}{\sqrt{2\pi} \cdot \sigma} \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m \int_{-\infty}^{\infty} z^{2m-1} \exp\left(-\frac{m}{\sigma^2} z^2\right) \exp\left(-\frac{(\xi_i - z)^2}{2\sigma^2}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \exp\left(-\frac{m}{\sigma^2} z^2 \left(\frac{1}{y^2} - 1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^2}}\right) dy dz.$$
(17)

Представим выражение (17) в удобном для дальнейших преобразований виде:

$$p(\xi_i | H_1) = c \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left(-\frac{\xi_i^2}{2\sigma^2}\right) \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m \int_{-\infty}^{\infty} z^{2m-1} \exp\left(-\frac{m}{\sigma^2} z^2\right) \times \exp\left(-\frac{-2z\xi_i + z^2}{2\sigma^2}\right) \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \exp\left(-\frac{m}{\sigma^2} z^2 \left(\frac{1}{y^2} - 1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^2}}\right) dy dz.$$
(18)

Используя формулы (2) и (18), получаем выражение для отношения правдоподобия:

$$\Lambda[\xi_{i}] = c \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^{2}}\right)^{m} \int_{-\infty}^{\infty} z^{2m-1} \exp\left(-\frac{m}{\sigma^{2}}z^{2} - \frac{z^{2}}{2\sigma^{2}}\right) \exp\left(\xi_{i}\left(\frac{z}{\sigma^{2}}\right)\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \exp\left(-\frac{m}{\sigma^{2}}z^{2}\left(\frac{1}{y^{2}}-1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^{2}}}\right) dydz,$$
(19)

которое с помощью разложения в степенной ряд можно записать в виде

$$\Lambda[\xi_i] = \sum_{k=0}^{\infty} \xi_i^k c \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m \int_{-\infty}^{\infty} z^{2m-1} \frac{z}{\sigma^2} (k!)^{-1} \exp\left(-\frac{m}{\sigma^2} z^2 - \frac{z^2}{2\sigma^2}\right) \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \times \exp\left(-\frac{m}{\sigma^2} z^2 \left(\frac{1}{y^2} - 1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^2}}\right) dy dz = \sum_{k=0}^{\infty} \mu_k \xi_i^k \stackrel{\geq}{\leq} \gamma,$$

$$(20)$$

где

$$\mu_{k} = c \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^{2}}\right)^{m} \int_{-\infty}^{\infty} z^{2m-1} \left(\frac{z}{\sigma^{2}}\right) (k!)^{-1} \exp\left(-\frac{m}{\sigma^{2}} z^{2} - \frac{z^{2}}{2\sigma^{2}}\right) \times \int_{-1+\varepsilon}^{1-\varepsilon} \left(\frac{1}{y}\right)^{2m-1} \exp\left(-\frac{m}{\sigma^{2}} z^{2} \left(\frac{1}{y^{2}} - 1\right)\right) \left(\frac{1}{\pi\sqrt{1-y^{2}}}\right) dy dz.$$

Как и в предыдущих вариантах, если $\Lambda[\xi_i] \ge \gamma$, принимается решение о наличии сигнала на фоне БГШ, если $\Lambda[\xi_i] < \gamma$ — об его отсутствии.

Таким образом, во всех трех вариантах постановки задачи обнаружения случайных величин удалось представить отношение правдоподобия в виде полинома по степеням k, но с разными коэффициентами, отражающими специфику каждой из модифицированных ПРВ. Естественно, необходимо ограничить суммы в выражениях (10), (15) и (20) конечным числом p. Важно отметить, что решение задачи обнаружения описанным способом оказывается справедливым и для случая приема негауссовых сигналов на фоне негауссовых белых шумов.

Обобщение результатов для многомерного случая. Полученные результаты распространим на случай совокупности N некоррелированных выборок, каждая из которых распределена по закону (6):

$$p(\boldsymbol{\xi}|H_{1}) = \frac{c^{N}}{(2\pi)^{\frac{N}{2}\prod_{i=1}^{n}\alpha_{i}}} \exp\left(-\frac{1}{2}\sum_{i=1}^{N}\xi_{i}^{2}\frac{1}{\sigma_{i}^{2}}\right)\left(\frac{\alpha\beta}{2\pi}\right)^{N}\prod_{i=1}^{N}\int_{-\infty}^{\infty} z_{i}^{\alpha-1}\exp\left(-\frac{-2\xi_{i}z_{i}+z_{i}^{2}}{2\sigma_{i}^{2}}-\beta z_{i}^{\alpha}\right)\times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \frac{1}{\sqrt{1-y_{i}^{2}}}\left(\frac{1}{y_{i}}\right)^{\alpha}\exp\left(-\beta z_{i}^{\alpha}\left(\frac{1-y_{i}}{y_{i}}\right)^{\alpha}\right)dy_{i}dz_{i} = \frac{c^{N}}{(2\pi)^{\frac{N}{2}}\left|\operatorname{diag}\left(\sigma_{i}^{2}\right)\right|_{i=1}^{N}\right|^{1/2}}\times \\ \times \exp\left(-\frac{1}{2}\xi^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]\xi\right)\left(\frac{\alpha\beta}{2\pi}\right)^{N}\int_{-\infty}^{\infty}\left|\operatorname{diag}\left(zz^{T}\right)\right|_{i=1}^{\alpha-1}\right]z\right)^{\frac{\alpha}{2}}\times \\ \times \exp\left(-\frac{1}{2}\left(2\xi^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]z+z^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]z\right)-\beta\left(z^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]z\right)^{\frac{\alpha}{2}}\times \\ \times \exp\left(-\frac{1}{2}\left(2\xi^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right)z+z^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]z\right)-\beta\left(z^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]z\right)^{\frac{\alpha}{2}}\times \\ \times \left(\sum_{i=1+\varepsilon}\left|\operatorname{diag}\left(\frac{1}{\sqrt{1-y_{i}^{2}}}\left(\frac{1}{y_{i}}\right)^{\alpha}\right|_{i=1}^{N}\right)z+z^{T}\left[\operatorname{diag}\left(\sigma_{i}^{2}\right)\right]_{i=1}^{N}\right]z\right)^{\frac{\alpha}{2}}\operatorname{tr}\left(\operatorname{diag}\left(\frac{1-y_{i}}{y_{i}}\right)^{\alpha}\right)dzdy, \quad (21)$$

где $|\cdot|$ означает вычисление детерминанта матрицы, заключенной в скобках; diag (\cdot) — диагональная матрица; tr (\cdot) означает след матрицы, заключенной в скобках; $\boldsymbol{\xi}^{T} = (\xi_{1}, ..., \xi_{N}),$ $\mathbf{z}^{T} = (z_{1}, ..., z_{N}), \mathbf{y}^{T} = (y_{1}, ..., y_{N}).$

Многомерная ПРВ белого гауссова шума определяется выражением

$$p(\xi|H_0) = \frac{1}{(2\pi)^{\frac{N}{2}\prod_{i=1}^{N}\sigma_i}} \exp\left(-\frac{1}{2}\sum_{i=1}^{N}\xi_i^2 \frac{1}{\sigma_i^2}\right) = \frac{1}{(2\pi)^{\frac{N}{2}}} \left|\operatorname{diag}(\sigma_i^2)\right|_{i=1}^{N}\right|^{1/2}} \times \exp\left(-\frac{1}{2}\xi^T \left[\operatorname{diag}(\sigma_i^2)\right]_{i=1}^{N}\right]\xi\right).$$
(22)

Используя формулы (21) и (22), получаем выражение для отношения правдоподобия:

$$\Lambda[\boldsymbol{\xi}] = \frac{p(\boldsymbol{\xi}|H_1)}{p(\boldsymbol{\xi}|H_0)} = c^{Np} \exp\left(-\frac{1}{2}\boldsymbol{\xi}^T \left[\operatorname{diag}\left(\sigma_i^2\right)\Big|_{i=1}^N\right] \boldsymbol{\xi}\right) \left(\frac{\alpha\beta}{2\pi}\right)^N \int_{-\infty}^{\infty} \left|\operatorname{diag}\left(\mathbf{z}\mathbf{z}^T\right)\Big|^{\frac{\alpha-1}{2}} \times \exp\left(-\frac{1}{2}\left(2\boldsymbol{\xi}^T \left[\operatorname{diag}\left(\sigma_i^2\right)\Big|_{i=1}^N\right] \mathbf{z} + \mathbf{z}^T \left[\operatorname{diag}\left(\sigma_i^2\right)\Big|_{i=1}^N\right] \mathbf{z}\right) - \beta\left(\mathbf{z}^T \left[\operatorname{diag}\left(\sigma_i^2\right)\Big|_{i=1}^N\right] \mathbf{z}\right)^{\frac{\alpha}{2}}\right) \times$$

$$\times \int_{-1+\varepsilon}^{1-\varepsilon} \left| \operatorname{diag} \left(\frac{1}{\sqrt{1-y_i^2}} \left(\frac{1}{y_i} \right)^{\alpha} \right|_{i=1}^{N} \right) \right| \times \\ \times \exp \left(-\beta \left(\mathbf{z}^T \left[\operatorname{diag} \left(\sigma_i^2 \right) \right|_{i=1}^{N} \right] \mathbf{z} \right)^{\frac{\alpha}{2}} \operatorname{tr} \left(\operatorname{diag} \left(\frac{1-y_i}{y_i} \right)^{\alpha} \right|_{i=1}^{N} \right) \right) d\mathbf{z} d\mathbf{y}.$$
(23)

<u>к</u> 1

По аналогии с рассмотренными выше скалярными вариантами отношение правдоподобия можно представить в виде произведения:

$$\Lambda[\boldsymbol{\xi}] = \prod_{i=1}^{N} \Lambda[\boldsymbol{\xi}_i] = \prod_{i=1}^{N} \left(\sum_{k=0}^{\infty} \mu_k \boldsymbol{\xi}_i^k \right)_{\leq}^{\geq} \gamma \,. \tag{24}$$

Для *N* коррелированных выборок $\eta = U\xi$ можно записать выражение для условной модифицированной ПРВ в виде

$$p(\mathbf{\eta}|H_{1}) = \frac{c^{N}}{\left(2\pi\right)^{\frac{N}{2}} \left| \operatorname{diag}\left(\sigma_{i}^{2}\right|_{i=1}^{N}\right)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}\mathbf{\eta}^{T}\mathbf{Q}\mathbf{\eta}\right) \left(\frac{\alpha\beta}{2\pi}\right)^{N} \times \int_{-\infty}^{\infty} \left| \operatorname{diag}\left(\mathbf{z}_{1}\mathbf{z}_{1}^{T}\right)\right|^{\frac{\alpha-1}{2}} \exp\left(-\frac{1}{2}\left(2\mathbf{\eta}^{T}\mathbf{Q}\mathbf{z}_{1} + \mathbf{z}_{1}^{T}\mathbf{Q}\mathbf{z}_{1}\right) - \beta\left(\mathbf{z}_{1}^{T}\mathbf{Q}\mathbf{z}_{1}\right)^{\frac{\alpha}{2}}\right) \times \int_{-\infty}^{\infty} \left| \operatorname{diag}\left(\frac{1}{\sqrt{1-y_{i}^{2}}}\left(\frac{1}{y_{i}}\right)^{\alpha}\right|_{i=1}^{N}\right) \right| \exp\left(-\beta\left(\mathbf{z}_{1}^{T}\mathbf{Q}\mathbf{z}_{1}\right)^{\frac{\alpha}{2}} \operatorname{tr}\left(\operatorname{diag}\left(\frac{1-y_{i}}{y_{i}}\right)^{\alpha}\right|_{i=1}^{N}\right)\right) d\mathbf{z}_{1}d\mathbf{y}_{1}, \quad (25)$$

где U — ортогональная матрица, для которой справедливы условия $\mathbf{U}^T \mathbf{U} = \mathbf{U}\mathbf{U}^T = \mathbf{U}\mathbf{U}^{-1} = \mathbf{I}$, $\mathbf{z}_1 = \mathbf{U}\mathbf{z}$, $\mathbf{Q} = \mathbf{U}^T \operatorname{diag}\left(\sigma_i^2\Big|_{i=1}^N\right)^{-1} \mathbf{U}$.

Многомерная гауссова ПРВ определяется как

$$p(\mathbf{\eta}|H_0) = \frac{1}{(2\pi)^{\frac{N}{2}} \left| \operatorname{diag} \left(\sigma_i^2 \right|_{i=1}^N \right) \right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \mathbf{\eta}^T \mathbf{Q} \mathbf{\eta} \right).$$
(26)

Используя формулы (25) и (26), получаем выражение для отношения правдоподобия:

$$\Lambda[\mathbf{\eta}] = c^{N} \left(\frac{\alpha\beta}{2\pi}\right)^{N} \int_{-\infty}^{\infty} \left| \operatorname{diag}\left(\mathbf{z}_{1}\mathbf{z}_{1}^{T}\right) \right|^{\frac{\alpha-1}{2}} \exp\left(-\frac{1}{2}\left(2\mathbf{\eta}^{T}\mathbf{Q}\mathbf{z}_{1} + \mathbf{z}_{1}^{T}\mathbf{Q}\mathbf{z}_{1}\right) - \beta\left(\mathbf{z}_{1}^{T}\mathbf{Q}\mathbf{z}_{1}\right)^{\frac{\alpha}{2}}\right) \times \\ \times \int_{-1+\varepsilon}^{1-\varepsilon} \left| \operatorname{diag}\left(\frac{1}{\sqrt{1-y_{i}^{2}}}\left(\frac{1}{y_{i}}\right)^{\alpha}\right|_{i=1}^{N}\right) \right| \exp\left(-\beta\left(\mathbf{z}_{1}^{T}\mathbf{Q}\mathbf{z}_{1}\right)^{\frac{\alpha}{2}} \operatorname{tr}\left(\operatorname{diag}\left(\frac{1-y_{i}}{y_{i}}\right)^{\alpha}\right|_{i=1}^{N}\right)\right) d\mathbf{z}_{1}d\mathbf{y}_{1}.$$
(27)

Формулу (27) можно записать в виде (24), используя разложение в степенной ряд, по крайней мере, тремя способами: первый основан на представлении $\eta = U\xi$ и $z_1 = Uz$,

второй — на введении вектора $\chi = Q\eta$, третий — на записи $z_2 = Qz_1$. Все три варианта осно-

ваны на представлении $\mathbf{Q} = \mathbf{U}^T \operatorname{diag} \left(\sigma_i^2 \Big|_{i=1}^N \right)^{-1} \mathbf{U}.$

Аналогично рассмотренному во втором варианте случаю обнаружения сигнала с амплитудой, распределенной по закону Вейбулла, и равномерно распределенной фазой можно получить выражения для обнаружения сигналов с логарифмически нормальным и *m*-распределением (Накагами) амплитуды и равномерно распределенной фазой.

Заключение. Предложенный алгоритм оптимального обнаружения основан на выводе, что совместную условную МПРВ совокупности негауссова сигнала и помехи можно представить в виде произведения условной ПРВ помехи на условную МПРВ негауссова сигнала при условии, что помеха обязательно имеет место в принятом колебании. Это представление справедливо не только для устойчивых случайных величин и процессов, но и для неустойчивых распределений вероятностей. Для технической реализации устройств обнаружения негауссовых сигналов на фоне помех целесообразно использовать разложение в степенной ряд отношения правдоподобия.

Статья подготовлена по результатам исследований, выполненных в рамках реализации мероприятия 1.2.1 федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009—2013 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лоэв М. Теория вероятностей / Пер. с англ.; Под ред. Ю. В. Прохорова. М.: Изд-во иностр. лит., 1962. 719 с.
- 2. Хелстром К. Статистическая теория обнаружения сигналов: Пер. с англ. М.: Изд-во иностр. лит., 1963. 430 с.
- 3. Ван Трис Г. Теория обнаружения, оценки и модуляции. Т.1. Теория обнаружения, оценок и линейной модуляции / Пер. с англ.; Под ред. В. И. Тихонова. М.: Сов. радио, 1972. 744 с.
- 4. Бакулев П. А., Степин В. М. Методы и устройства селекции движущихся целей. М.: Радио и связь, 1986. 288 с.
- 5. Бачевский А. С., Бачевский С. В., Шаталов А. А., Шаталова В. А. Математические модели сигналов, помех и шумов, принимаемых антенными системами в условиях многолучевого распространения электромагнитных волн // Тр. Междунар. науч.-техн. конф., посвященной 80-летию вуза, "Системы и процессы управления и обработки информации". СПб: Сев.-Зап. техн. ун-т, 2010. Ч. 1. С. 83—91.

Сведения об авторах		
Бачевский Антон Сергеевич	—	Санкт-Петербургский государственный университет аэрокосмиче- ского приборостроения, кафедра антенн и эксплуатации радио-
Шаталова Валентина Александровна	_	электронной аппаратуры; ассистент; E-mail: antbachev@gmail.com канд. техн. наук, доцент; Санкт-Петербургский государственный университет аэрокосмического приборостроения, кафедра антенн
		и эксплуатации радиоэлектронной аппаратуры; E-mail: sh_alan@mail.ru
_		

Рекомендована кафедрой радиолокации Санкт-Петербургского военного училища радиоэлектроники Поступила в редакцию 23.08.11 г.