# ГИРОСКОПИЧЕСКИЕ И НАВИГАЦИОННЫЕ СИСТЕМЫ

УДК 527.62:523.2+623.466.33

## Т. В. Данилова, М. А. Архипова

## ОПРЕДЕЛЕНИЕ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА В ГЕОЦЕНТРИЧЕСКОЙ ЭКВАТОРИАЛЬНОЙ СИСТЕМЕ КООРДИНАТ НА ОСНОВЕ АСТРОИЗМЕРЕНИЙ ПРИ ОТСУТСТВИИ ДАННЫХ О ПАРАМЕТРАХ ОРБИТЫ

Предлагается способ определения ориентации космического аппарата в геоцентрической экваториальной системе координат при отсутствии данных о параметрах орбиты на основе астроизмерений и последующего распознавания звезд.

**Ключевые слова:** распознавание звезд, автономная ориентация космического аппарата, оптико-электронный прибор, астроизмерения.

Задача определения ориентации корпуса космического аппарата (КА) в геоцентрической экваториальной инерциальной системе координат (ГЭИСК) решается при следующих предположениях:

— КА находится в состоянии орбитального полета, при этом априорные данные о параметрах орбиты отсутствуют;

— на корпусе КА жестко закреплен оптико-электронный прибор (ОЭП) под углами λ и ρ;

— КА оснащен системой стабилизации, которая удерживает корпус аппарата относительно осей текущей орбитальной системы координат с некоторой постоянной или меняющейся в малом диапазоне погрешностью; эта погрешность по тангажу, рысканью и крену может достигать единиц градусов.

На каждом измерительном сеансе задача расчета направляющих векторов осей X, Y и Z связанной системы координат (ССК), где X — продольная ось, Y и Z — боковые, решается в три этапа [1, 2]:

1) распознавание звезд, наблюдаемых в поле зрения ОЭП;

2) расчет ортов приборной системы координат (ПСК) в ГЭИСК;

3) определение ориентации КА в ГЭИСК.

Рассмотрим эти этапы подробно.

**Распознавание звезд.** Распознавание звезд производится на основе базы звезд, сформированной по каталогу HIPPARCOS, который в настоящее время является наиболее точным и в силу этого наиболее пригодным для решения задач навигации и ориентации на борту. Каталог HIPPARCOS содержит 118 218 записей (в каждой 78 полей), из которых отобрано 117 955 записей по критерию  $\alpha \neq 0$  и  $\delta \neq 0$ , здесь  $\alpha$  и  $\delta$  — прямое восхождение и склонение звезды соответственно.

Каждая из выбранных записей содержит следующую информацию о звезде: номер по каталогу HIPPARCOS, значения  $\alpha$  и  $\delta$ , звездная величина, собственное движение по  $\alpha$ , собственное движение по  $\delta$ , тригонометрический параллакс. Три последних параметра предназначены для приведения сформированного каталога звезд к эпохе, отвечающей заданным дате и времени, например началу мерного интервала.

При рассмотрении модели ОЭП, чувствительность которого обозначим через q, создается динамическая (или рабочая) база звезд, куда включаются звезды, звездная величина которых, с учетом погрешности измерения, не превосходит q.

Алгоритмом предусмотрена разбивка небесной сферы на четырнадцать областей, в соответствии с чем и динамическая база разбивается на четырнадцать частей с учетом таких характеристик ОЭП, как чувствительность и поле зрения.

В общем случае распознавание звезд может производиться в одном из следующих режимов: локальном, смешанном и глобальном, первые два из которых применяются при наличии априорных данных об орбите, когда рассчитывается примерное направление оптической оси ОЭП и определяется область, в которую эта ось направлена [2]. В рассматриваемом случае, при отсутствии априорных данных об орбите, распознавание производится в глобальном режиме последовательно по всем четырнадцати областям.

Максимальное количество распознаваемых звезд (Q) может варьироваться от 10 до 50. Очевидно, что при увеличении Q надежность результатов распознавания повышается. Однако опыт моделирования показывает, что эти результаты достаточно надежны и при  $10 \le Q \le 20$ . Если наблюдаемое количество звезд  $\tilde{Q} < Q$ , то полагается  $Q = \tilde{Q}$ . Распознавание не проводится, если  $\tilde{Q} < 5$ .

Начальным шагом для всех режимов распознавания является формирование матрицы  $Z^{(0)} = \left\| Z_{kl}^{(0)} \right\|, k, l = 1, ..., Q$ , элементы которой представляют собой угловые расстояния между звездами, наблюдаемыми в поле зрения ОЭП, которые рассчитываются после измерения приборных координат звезд:

$$Z_{kl}^{(0)} = \begin{cases} \arccos(a_k, a_l), k = 1, \dots, Q - 1; l = k + 1, \dots, Q; \\ 0, k = 1, \dots, Q; l = 1, \dots, k. \end{cases}$$
(1)

Направляющие косинусы звезд в ПСК  $a_k(\xi_k^0, \eta_k^0, \zeta_k^0)$  рассчитываются известным образом по измеренным приборным координатам звезд  $(\xi_k, \eta_k)$ , k = 1, ..., Q, и фокусному расстоянию прибора f[1, 3].

Ключевым является алгоритм распознавания по области разбиения небесной сферы с заданным номером. Суть этого алгоритма заключается в следующем.

Для каждой звезды с измеренными параметрами ( $\xi_k$ ,  $\eta_k$ ,  $m_k$ ), где  $m_k$  — звездная величина, k = 1, ..., Q, формируется список "претендентов", в который включаются звезды, принадлежащие данной области и близкие к данной звезде по звездной величине. Степень этой "близости" определяется точностными характеристиками ОЭП по оценке звездной величины, при этом приборная погрешность измерения звездной величины ( $\Delta q$ ) известна и задается в процентах. Отметим, что проверка алгоритма распознавания на имитационной модели [2, 4] показала его надежность при  $\Delta q \in [3,0; 50,0]$ .

Путем перебора звезд из этих списков, организованного по разработанному оригинальному алгоритму [2], формируются цепочки звезд размером Q (по одной звезде из каждого списка). При включении звезды в цепочку проверяются следующие условия: все звезды цепочки должны быть одновременно "наблюдаемы" в поле зрения ОЭП, т.е. их взаимные угло-

вые расстояния не должны превышать поля зрения ОЭП; контролируется разность измеренных и фактических угловых расстояний, т.е. проверяется истинность условия

$$\left|Z_{kl} - Z^{(0)}_{kl}\right| < \Delta U \,, \tag{2}$$

где  $Z_{kl}$  — фактические угловые расстояния между звездами, определяемые по бортовому каталогу;  $\Delta U$  — малая величина, рассчитываемая в зависимости от погрешности измерения координат звезд:

$$\Delta U = K_U \sqrt{2} \cdot \left( \left| \Delta P \right| + 3\sigma P \right), \tag{3}$$

здесь  $\Delta P$ ,  $\sigma P$  — систематическая и случайная погрешности ОЭП соответственно;  $K_U \in [1; 2]$  — коэффициент, значение которого изменяется в зависимости от используемого режима распознавания.

Если не выполняется хотя бы одно из проверяемых условий, то звезда в цепочку не включается, цепочка на этом "обрывается", и выбирается следующая звезда из этого же списка "претендентов".

По окончании формирования допустимой цепочки размером Q рассчитывается матрица  $Z = ||Z_{kl}||, k = 1, ..., Q - 1, l = k + 1, ..., Q$ , и вычисляется значение функции

$$S(Z) = \sum_{k=1}^{Q-1} \sum_{l=k+1}^{Q} \left( Z_{kl} - Z_{kl}^{(0)} \right)^2.$$
(4)

Функция *S* определяет меру различия между двумя рисунками звезд, один из которых наблюдается в поле зрения ОЭП, а другой составлен из звезд — элементов допустимых цепочек.

Далее определяется минимальное значение функции S по всем допустимым цепочкам, которое и обеспечивает результат распознавания — массив звезд, в наибольшей степени отвечающий наблюдаемому в поле зрения ОЭП рисунку звезд. Результат распознавания формируется путем сравнения найденного значения  $S_{\min}$  с некоторым малым допустимым значением  $\Delta S$ , которое рассчитывается исходя из погрешностей измерения и величины Q:

$$\Delta S = K_S \frac{2000}{9} \left( 1 + \frac{(Q-1)^2}{2} \right) \left( |\Delta P| + 3\sigma P \right) \left( \frac{3600 \cdot 180}{\pi} \right)^2 C_1, \tag{5}$$

где  $K_S \in [1,5;25]$  — коэффициент, значение которого изменяется в зависимости от используемого режима распознавания;  $C_1 = 0,8860987877''$  — усредненное значение величины  $S_{\min}$ , полученное опытным путем при  $\Delta P = 0$ ,  $\sigma P = 0,1$  и Q = 10.

Если

$$S_{\min} < \Delta S$$
, (6)

то результат распознавания принимается, в противном случае звезды считаются нераспознанными.

Изменение величин  $\Delta U$  и  $\Delta S$  (формулы (3) и (6)) имеет большое значение для различных целей исследования. Если необходимо добиться на мерном интервале наибольшего числа положительных распознаваний (например, при отсутствии данных об орбите, т.е. в рассматриваемом случае), тогда эти величины следует увеличить, а при моделировании решения задачи навигации и ориентации — уменьшить в целях исключения грубых измерений.

Определение ориентации ОЭП в ГЭИСК. В результате распознавания звезд, осуществленного согласно формулам (1)—(6), имеем Q идентифицированных звезд. Принимая во внимание равенство угловых расстояний между ортами  $a_0$  наблюдаемых звезд и осями ПСК, с одной стороны, и между направляющими косинусами распознанных звезд и осями ГЭИСК — с другой, можно определить орты осей  $\xi$ ,  $\eta$ ,  $\varsigma$  ОЭП путем решения трех систем Q линейных уравнений с тремя неизвестными:

$$b_{11}c_{n1} + b_{12}c_{n2} + b_{13}c_{n3} = a_{1n};$$

$$b_{21}c_{n1} + b_{22}c_{n2} + b_{23}c_{n3} = a_{2n};$$

$$\vdots$$

$$b_{Q1}c_{n1} + b_{Q2}c_{n2} + b_{Q3}c_{n3} = a_{Qn},$$
(7)

где  $\mathbf{b}_k = (b_{k1}, b_{k2}, b_{k3})$  — направляющие косинусы распознаваемых звезд в ГЭИСК;  $\mathbf{c}_n = (c_{n1}, c_{n2}, c_{n3})$  — искомый вектор направляющих косинусов осей ОЭП, n = 1 соответствует оси  $\xi$ , n = 2 — оси  $\eta$  и n = 3 — оси  $\zeta$ .

Каждая из систем вида (7) решается методом наименьших квадратов: ее решением является такой вектор  $\mathbf{c}_n$ , который минимизирует длину вектора невязки (разности правой и левой частей системы), т.е.

$$f(c) = \sum_{k} \left( b_{k1}c_{n1} + b_{k2}c_{n2} + b_{k3}c_{n3} - a_{kn} \right)^2 \to \min.$$
(8)

После расчета частных производных функции (8) с учетом  $\frac{\partial f}{\partial c_n} = 0$  составляется система

нормальных уравнений

$$B \cdot \mathbf{c}_n = \mathbf{A} \,, \tag{9}$$

при этом 
$$B = (B_{ij}), B_{jk} = \sum_{k=1}^{Q} b_{ki} b_{kj}; \mathbf{A} = (A_j), A_j = \sum_{k=1}^{Q} b_{kj} a_{kn}, i, j = 1, 2, 3.$$

Из формулы (9), после обращения матрицы В, определяется искомый вектор

$$\mathbf{c}_n = B^{-1} \cdot \mathbf{A} \,. \tag{10}$$

**Определение ориентации КА в ГЭИСК.** Задача определения направляющих векторов  $x_0$ ,  $y_0$ ,  $z_0$  осей ССК (в ГЭИСК) решается следующим образом.

Из векторов  $\mathbf{c}_n$ , полученных согласно уравнениям (7)—(10), составляется матрица

$$M_1 = \{ m_{nj} \}, m_{nj} = c_{nj}, n, j = 1, 2, 3,$$

которая является матрицей перехода из ГЭИСК в ПСК.

По известным значениям углов крепления ОЭП на корпусе КА формируется матрица перехода из ПСК в ССК [1, 2]:

$$M_{1} = \begin{vmatrix} -\sin\lambda & \cos\lambda & 0 \\ -\cos\lambda\sin\rho & -\sin\lambda\sin\rho & \cos\rho \\ \cos\lambda\cos\rho & \sin\lambda\cos\rho & \sin\rho \end{vmatrix}$$

Матрица

$$M_3 = M_2^T M_1 ,$$

являющаяся матрицей перехода из ГЭИСК в ССК, дает решение задачи; искомые векторы  $x_0, y_0, z_0$  — соответственно первая, вторая и третья строки матрицы  $M_3$ .

Точность решения задачи определяется точностью расчета элементов матриц  $M_1$  и  $M_2$ .

**Результаты моделирования.** Для исследования точности предложенного алгоритма в среде программирования C++ Builder 6.0 была создана имитационная модель. Согласно принципам объектно-ориентированной технологии разработаны классы, моделирующие функционирование отдельных элементов бортового комплекса навигации и ориентации. К таковым относятся классы AS\_VOZMU (модель возмущений), AS\_SUN\_SYSTEM (модель солнечной системы), AS\_INTEGR (интегрирование уравнений движения), AS\_ORBITA (модель движения KA с учетом заданных возмущений и методов интегрирования), AS\_OEP\_PRIBOR (модель оптико-электронного прибора, реализующая функции измерения координат, звездных величин, распознавания звезд и расчета ортов приборных осей) и др. Для целей исследования разработан класс AS\_STATISTIC, который позволяет рассчитывать статистические характеристики по заданной выборке (среднее, среднеквадратическое отклонение, минимум, максимум и др.).

Эксперименты проводились для орбит, параметры которых представлены в табл. 1. Данные об орбите использовались для моделирования измерений. В модели движения КА гравитационное поле представлялось в виде точечных масс [1, 2], в зависимости от высоты орбиты учитывались гравитационное влияние Солнца и Луны, световое давление, тормозящее воздействие атмосферы. Интегрирование уравнения движения КА проводилось методом Рунге — Кутты и Адамса четвертого порядка с корректировкой [5]. При этом варьировались погрешности системы стабилизации, углы закрепления ОЭП на корпусе КА ( $\lambda$ ,  $\rho$ ), систематическая и случайная погрешности ОЭП.

|                    |                  |            |            |                         |         | Таблица 1 |
|--------------------|------------------|------------|------------|-------------------------|---------|-----------|
|                    | Параметры орбиты |            |            |                         |         |           |
| Номер              | Большая          | Эксцентри- | Пондоношио | Восходящий              | Точка   | Истинная  |
| орбиты             | полуось          | ситет      |            | узел                    | перигея | аномалия  |
|                    | <i>а,</i> км     | е          | ι,         | Ω, …°                   | ω,°     | 9,°       |
| 1                  | 6780             | 0,01       | 85         | 60                      | 0       | 0         |
| 2                  | 7378             | 0,01       | 84         | 0                       | 0       | 0         |
| 3                  | 7378             | 0,01       | 85         | 0                       | 0       | 0         |
| 4                  | 25478            | 0,01       | 63         | 120                     | 60      | 0         |
| 5                  | 27800            | 0,75       | 0,01       | 120                     | 60      | 0         |
| 6                  | 29000            | 0,75       | 63         | 0                       | 0       | 0         |
| 7                  | 42400            | 0,01       | 0          | 0                       | 30      | 0         |
| Дата               |                  |            |            | Время                   |         |           |
| (день, месяц, год) |                  |            |            | (часы, минуты, секунды) |         |           |
| 02.03.2011         |                  |            |            | 01:02:03.860            |         |           |

Измерения проводились с интервалом 50 с для низких орбит, 180 с — для средних, 300 с — для геостационара и орбит 4, 5, 6; количество измерений — не менее 100...200 на мерном интервале в один виток.

Анализировались углы *и* между фактическими и расчетными направлениями оптической оси  $\zeta$  ОЭП и осей КА, определяющие точность представленного алгоритма. Для угла *и* рассчитывалось среднее значение ( $\Delta u$ ), среднеквадратичное отклонение ( $\sigma_u$ ), минимальное ( $u_{\min}$ ) и максимальное ( $u_{\max}$ ) значения, а также оценка  $\hat{u} = \Delta u + 3\sigma_u$ .

На рисунке представлен график зависимости  $\Delta u$  и  $\hat{u}$  от  $\sigma P$  (группы кривых  $\mathcal{A}$  и  $\mathcal{B}$  соответственно) при погрешности стабилизации в 1° (по тангажу, рысканью и крену),  $\lambda = 45^\circ$ ,  $\rho = 45^\circ$  и  $\Delta P = 0$  для всех исследованных орбит. Анализ графиков показывает, что характеристики  $\Delta u$  и  $\hat{u}$  слабо зависят от орбиты. Более того, аналогичная закономерность обнаруживается и при других значениях погрешностей стабилизации и углах крепления ОЭП.



Результаты моделирования для орбиты 1 представлены в табл. 2, из которой видно, что при  $\Delta P = 0$  погрешность определения ориентации корпуса КА примерно в шесть раз больше погрешности расчета ориентации оптической оси ОЭП, а при  $\Delta P \neq 0$ 

| $\hat{u}_{\mathrm{KA}}$ | $=\kappa\hat{u}_{O\Theta\Pi},$ | ĸ∈ | (0, 6; 3) | ) ( |
|-------------------------|--------------------------------|----|-----------|-----|
|                         |                                |    |           |     |

Таблица 2

| ΔΡ, σΡ," | Ось | Погрешности расчета направлений оптической оси ζ ОЭП и осей X, Y, Z ССК |                      |                            |                            |         |  |
|----------|-----|-------------------------------------------------------------------------|----------------------|----------------------------|----------------------------|---------|--|
|          |     | $\Delta u, \ldots "$                                                    | $\sigma_u, \ldots''$ | <i>u</i> <sub>min</sub> ," | <i>u</i> <sub>max</sub> ," | û ,"    |  |
|          | ζ   | 0,05689                                                                 | 0,0336862            | 0,00435                    | 0,17362                    | 0,15795 |  |
| 0,0;     | X   | 0,29266                                                                 | 0,2044993            | 0,02766                    | 0,92855                    | 0,90616 |  |
| 0,1      | Y   | 0,28731                                                                 | 0,2000521            | 0,01792                    | 0,87297                    | 0,88747 |  |
|          | Ζ   | 0,26675                                                                 | 0,2145556            | 0,01229                    | 1,01040                    | 0,91042 |  |
|          | ζ   | 0,28469                                                                 | 0,1682043            | 0,02608                    | 0,86809                    | 0,78931 |  |
| 0,0;     | X   | 1,46341                                                                 | 1,0224021            | 0,13964                    | 4,64278                    | 4,53062 |  |
| 0,5      | Y   | 1,43665                                                                 | 1,0001982            | 0,09175                    | 4,36489                    | 4,43725 |  |
|          | Ζ   | 1,33383                                                                 | 1,0727300            | 0,06101                    | 5,05203                    | 4,55202 |  |
|          | ζ   | 0,56940                                                                 | 0,3364002            | 0,05216                    | 1,73620                    | 1,57860 |  |
| 0,0;     | X   | 2,92683                                                                 | 2,0447993            | 0,27931                    | 9,28552                    | 9,06123 |  |
| 1,0      | Y   | 2,87331                                                                 | 2,0003880            | 0,18354                    | 8,72975                    | 8,87447 |  |
|          | Ζ   | 2,66765                                                                 | 2,1454652            | 0,12179                    | 10,10418                   | 9,10405 |  |

|                           |     |                                                                               |                     |                            | Проде                      | олжение табл. 2 |
|---------------------------|-----|-------------------------------------------------------------------------------|---------------------|----------------------------|----------------------------|-----------------|
| ΔP σP ″                   | Ось | Погрешности расчета направлений оптической оси $\zeta$ ОЭП и осей X, Y, Z ССК |                     |                            |                            |                 |
| $\Delta i$ , $\delta i$ , |     | $\Delta u, \ldots "$                                                          | $\sigma_u, \dots''$ | <i>u</i> <sub>min</sub> ," | <i>u</i> <sub>max</sub> ," | û ,"            |
|                           | ζ   | 1,70822                                                                       | 1,0092208           | 0,15645                    | 5,20879                    | 4,73588         |
| 0,0;                      | Х   | 8,78049                                                                       | 6,1344057           | 0,83796                    | 27,85609                   | 27,18371        |
| 3,0                       | Y   | 8,61992                                                                       | 6,0010818           | 0,55078                    | 26,18897                   | 26,62316        |
|                           | Ζ   | 8,00296                                                                       | 6,4364526           | 0,36538                    | 30,31391                   | 27,31232        |
|                           | ζ   | 2,84707                                                                       | 1,6820610           | 0,26093                    | 8,68166                    | 7,89325         |
| 0,0;                      | X   | 14,63415                                                                      | 10,2240282          | 1,39659                    | 46,42601                   | 45,30623        |
| 5,0                       | Y   | 14,36651                                                                      | 10,0016707          | 0,91806                    | 43,64782                   | 44,37152        |
|                           | Ζ   | 13,33827                                                                      | 10,7275207          | 0,60890                    | 50,52547                   | 45,52083        |
|                           | ζ   | 5,69428                                                                       | 3,3642552           | 0,52283                    | 17,36506                   | 15,78704        |
| 0,0;                      | Ň   | 29,26825                                                                      | 20,4481537          | 2,79312                    | 92,84803                   | 90,61271        |
| 10,0                      | Y   | 28,73288                                                                      | 20,0026822          | 1,83657                    | 87,29328                   | 88,74092        |
|                           | Ζ   | 26,67654                                                                      | 21,4555405          | 1,21740                    | 101,06237                  | 91,04316        |
|                           | ζ   | 17,08458                                                                      | 10,0943795          | 1,57995                    | 52,11603                   | 47,36771        |
| 0,0;                      | X   | 87,80423                                                                      | 61,3457032          | 8,37870                    | 278,49604                  | 271,84134       |
| 30,0                      | Y   | 86,19704                                                                      | 60,0002378          | 5,51489                    | 261,85161                  | 266,19776       |
|                           | Ζ   | 80,02964                                                                      | 64,3726410          | 3,64734                    | 303,32401                  | 273,14757       |
|                           | ζ   | 1,39915                                                                       | 0,0488519           | 1,28191                    | 1,55028                    | 1,54571         |
| 1,0;                      | X   | 1,42002                                                                       | 0,1535081           | 0,96011                    | 1,89920                    | 1,88054         |
| 0,1                       | Y   | 0,77920                                                                       | 0,2720871           | 0,22850                    | 1,57643                    | 1,59546         |
|                           | Ζ   | 1,24492                                                                       | 0,1919204           | 0,92673                    | 1,95810                    | 1,82068         |
|                           | ۲   | 1,40399                                                                       | 0,2462114           | 0,81876                    | 2,18038                    | 2,14263         |
| 1,0;                      | X   | 2,03828                                                                       | 0,9192998           | 0,62515                    | 4,92618                    | 4,79618         |
| 0,5                       | Y   | 1,62074                                                                       | 1,0500766           | 0,05171                    | 5,03172                    | 4,77097         |
| ,                         | Ζ   | 1,86938                                                                       | 0,9248337           | 0,66181                    | 5,81358                    | 4,64388         |
|                           | ζ   | 4,19530                                                                       | 0,2446639           | 3,61293                    | 4,95515                    | 4,92929         |
| 3,0;                      | X   | 4,42872                                                                       | 0,7979229           | 2,06687                    | 6,80972                    | 6,82249         |
| 0,5                       | Y   | 2,59873                                                                       | 1,2239888           | 0,48638                    | 6,44935                    | 6,27070         |
|                           | Ζ   | 3,90494                                                                       | 0,9123128           | 2,60707                    | 7,68343                    | 6,64188         |
| 3,0;                      | ζ   | 4,19792                                                                       | 0,4913845           | 3,03267                    | 5,73731                    | 5,67208         |
|                           | X   | 5,13803                                                                       | 1,7429077           | 1,32006                    | 10,51613                   | 10,36675        |
| 1,0                       | Y   | 3,62695                                                                       | 2,1654611           | 0,34223                    | 10,76822                   | 10,12333        |
|                           | Ζ   | 4,63830                                                                       | 1,7808345           | 2,54140                    | 12,49355                   | 9,98080         |
|                           | ζ   | 6,99578                                                                       | 0,2442565           | 6,40958                    | 7,75141                    | 7,72855         |
| 5,0;                      | Х   | 7,10011                                                                       | 0,7675561           | 4,80055                    | 9,49613                    | 9,40278         |
| 0,5                       | Y   | 3,89601                                                                       | 1,3604198           | 1,14273                    | 7,88222                    | 7,97727         |
|                           | Z   | 6,22458                                                                       | 0,9596059           | 4,63366                    | 9,79064                    | 9,10340         |
|                           | ζ   | 6,99152                                                                       | 0,4897925           | 5,82779                    | 8,51564                    | 8,46089         |
| 5,0;<br>1,0               | X   | 7,56832                                                                       | 1,6305750           | 2,84083                    | 12,30185                   | 12,46005        |
|                           | Y   | 4,62333                                                                       | 2,3479914           | 1,09709                    | 12,18633                   | 11,66731        |
|                           | Ζ   | 6,70297                                                                       | 1,7936679           | 4,18338                    | 14,37239                   | 12,08398        |
| 5,0;<br>1,5               | ζ   | 6,99414                                                                       | 0,7365655           | 5,24749                    | 9,29813                    | 9,20384         |
|                           | X   | 8,28196                                                                       | 2,5804596           | 1,96307                    | 16,15348                   | 16,02334        |
|                           | Y   | 5,66422                                                                       | 3,2851567           | 0,81863                    | 16,50594                   | 15,51969        |
|                           | Ζ   | 7,44418                                                                       | 2,6593206           | 4,21766                    | 19,19192                   | 15,42215        |
| 5,0;<br>2,0               | ζ   | 7,00361                                                                       | 0,9838830           | 4,66925                    | 10,09466                   | 9,95526         |
|                           | X   | 9,17651                                                                       | 3,5674189           | 3,22365                    | 20,33033                   | 19,87877        |
|                           | Y   | 6,84100                                                                       | 4,2652661           | 0,32147                    | 20,83150                   | 19,63680        |
|                           | Z   | 8,34540                                                                       | 3,6114793           | 3,86380                    | 24,10711                   | 19,17984        |

Разработанная имитационная модель позволяет сформировать требования к характеристикам ОЭП для достижения требуемой точности определения ориентации корпуса КА в ГЭИСК. Например, при  $\Delta u \le 5''$  погрешности ОЭП должны быть следующими:  $\Delta P \le 1''$ ,  $\sigma P \in [0, 1''; 0, 5''].$ 

На основе представленного экспериментального материала можно сделать очевидный вывод, что при отсутствии априорных данных об орбите и фактической ориентации корпуса КА относительно текущей орбитальной системы координат точность расчета направлений осей ОЭП и КА в ГЭИСК определяется только погрешностями прибора и не зависит от орбиты, ориентации КА и углов закрепления ОЭП на его корпусе.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Кузнецов В. И., Данилова Т. В. Автоматизированная система исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов: Учеб. пособие. СПб: ВКА им. А. Ф. Можайского, 2006.
- 2. *Кузнецов В. И.* Автоматизированная система научных исследований методов и алгоритмов автономной навигации и ориентации космических аппаратов. Монография. СПб: ВКА им. А. Ф. Можайского, 2010. В 2 ч.
- 3. *Кузнецов В. И., Данилова Т. В.* Алгоритмы распознавания "рабочих" звезд по звездному полю // Изв. вузов. Приборостроение. 2003. Т. 46, № 4. С. 16—23.
- 4. *Кузнецов В. И., Данилова Т. В.* Система автономной навигации и ориентации ИСЗ, основанная на виртуальных измерениях зенитных расстояний звезд // Космические исследования. 2011. Т. 49, № 6. С. 551—562.
- 5. Смолицкий Х. Л., Рыжиков Ю. И. Вычислительная математика: Учеб. пособие. Л.: ВИКИ им. А. Ф. Можайского, 1976.

#### Сведения об авторах

|                               | 1                                                                  |
|-------------------------------|--------------------------------------------------------------------|
| Тамара Валентиновна Данилова  | <br>канд. техн. наук; Военный институт Военно-космической академии |
|                               | им. А. Ф. Можайского, Санкт-Петербург;                             |
|                               | E-mail: danitoma58@yandex.ru                                       |
| Марина Александровна Архипова | <br>Военный институт Военно-космической академии им. А. Ф. Можай-  |
|                               | ского, Санкт-Петербург; науч. сотрудник;                           |
|                               | E-mail: marina arhipova@mail.ru                                    |
|                               |                                                                    |
|                               |                                                                    |

Рекомендована Военным институтом ВКА им. А. Ф. Можайского Поступила в редакцию 02.04.13 г.