СПИСОК ЛИТЕРАТУРЫ

- 1. *Герасимов А. Н., Карагодин В. В.* Определение числа интервалов оптимального по быстродействию управления объектом с присоединенным гармоническим осциллятором // Изв. вузов. Приборостроение. 1990. Т. 33, № 9. С. 15—19.
- 2. *Карагодин В. В.* Метод последовательных опорных решений в задачах оптимального быстродействия. СПб: ВКА им. А. Ф. Можайского, 2013. 144 с.

Сведения об авторе

Владимир Викторович Карагодин

канд. техн. наук, профессор; Военно-космическая академия им. А. Ф. Можайского, кафедра энергоснабжения, Санкт-Петербург

Рекомендована кафедрой энергоснабжения

Поступила в редакцию 19.06.13 г.

УДК 620.1, 531.7

В. М. МУСАЛИМОВ, Г. Б. ЗАМОРУЕВ, Ю. С. МОНАХОВ

МОДЕЛИРОВАНИЕ ДИНАМИКИ ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ МОНИТОРИНГА ПОДЗЕМНЫХ КАМЕР

Рассматриваются особенности моделирования динамики скважинного гидроакустического прибора для мониторинга подземных камер. Предложена математическая модель механической системы, определены ее основные параметры, выведена передаточная функция и выполнено моделирование.

Ключевые слова: скважинный гидроакустический прибор, измерительная система, моделирование динамики, передаточная функция.

Скважинные гидроакустические приборы применяются в современной технике для контроля за состоянием подземных камер при добыче полезных ископаемых и хранении жидких углеводородов [1]. При разработке полезных ископаемых закрытым способом на расстоянии от нескольких сотен метров до нескольких километров под поверхностью земли образуются пустоты (камеры), мониторинг которых представляет весьма нетривиальную инженерную задачу, связанную с необходимостью проводить измерения объемных характеристик камер на большой глубине (до 2,5 км), зачастую в агрессивной среде (например, рассол) при гидростатическом давлении до 25 МПа.

Используемый для мониторинга подземных камер скважинный прибор (рис. 1, a) с помощью каротажной станции опускается через технологическую трубу в скважину для исследования пространственного расположения стенок камеры и ее свода. Радиальное измерение расстояний до стенок камеры обеспечивается поворотом блока преобразователей вокруг оси прибора с помощью встроенных в блок кинематики редуктора и электродвигателя.

Моделирование динамики измерительной системы позволяет оптимизировать ее конструктивные параметры для повышения точности и сокращения времени измерений [2].

Математическая модель рассматриваемой электромеханической измерительной системы приведена на рис. 1, *б*. Подвижные блоки прибора представлены в виде двух масс, связанных между собой и с наземным неподвижным основанием упругими и диссипативными связями. Движения рассматриваемой системы описываются следующими дифференциальными уравнениями:

$$\begin{cases} J_{1}\ddot{\varphi}_{1} + c_{1}\varphi_{1} + c_{2}(\varphi_{1} - \varphi_{2}) + b_{2}(\dot{\varphi}_{1} - \dot{\varphi}_{2}) + b_{1}\dot{\varphi}_{1} = 0, \\ J_{2}\ddot{\varphi}_{2} + c_{2}(\varphi_{2} - \varphi_{1}) + b(\dot{\varphi}_{2} - \dot{\varphi}_{1}) = M, \end{cases}$$
(1)

где φ_1 и φ_2 — угол поворота соответственно первой и второй массы; M — момент на валу электродвигателя; m_1 и J_1 — масса и момент инерции первой массы; m_2 и J_2 — масса и момент инерции второй массы; c_1 — крутильная жесткость геофизического кабеля; c_2 — жесткость передаточного механизма; b_1 — конструктивная вязкость геофизического кабеля; b_2 коэффициент демпфирования, учитывающий трение в уплотнительных элементах конструкции [3].

Puc. 1

На основании системы уравнений (1) с помощью пакета MatLab Simulink составлена схема моделирования, представленная на рис. 2, a. Было выполнено моделирование динамической системы с помощью среды SimMechanics (рис. 2, δ), которая на основе построенной в редакторе системы формулирует и решает уравнения движения для всей механической системы.

Для исследования точностных параметров работы электромеханической измерительной системы определим передаточную функцию и проанализируем ее с точки зрения теории управления. Представим математическую модель системы в следующем виде:

$$\ddot{\phi}_{1} + q_{1}\phi_{1} + q_{2}(\phi_{1} - \phi_{2}) + q_{3}(\dot{\phi}_{1} - \dot{\phi}_{2}) + q_{4}\dot{\phi}_{1} = 0, \ddot{\phi}_{2} + q_{5}(\phi_{2} - \phi_{1}) + q_{6}(\dot{\phi}_{2} - \dot{\phi}_{1}) - Q = 0.$$

$$(2)$$

Здесь

$$q_1 = \frac{c_1}{J_1}; \quad q_2 = \frac{c_2}{J_1}; \quad q_3 = \frac{b_2}{J_1}; \quad q_4 = \frac{b_1}{J_1}; \quad q_5 = \frac{c_2}{J_2}; \quad q_6 = \frac{b_2}{J_2}; \quad Q = \frac{M}{J_2}.$$
 (3)

Представим систему в виде уравнений Коши:

$$\dot{\Phi}_{1} = \Phi_{2}; \dot{\Phi}_{2} = -q_{1}\Phi_{1} - q_{2}(\Phi_{1} - \Phi_{3}) - q_{3}(\Phi_{2} - \Phi_{4}) - q_{4}\Phi_{2}; \dot{\Phi}_{3} = \Phi_{4}; \dot{\Phi}_{4} = -q_{5}(\Phi_{3} - \Phi_{1}) - q_{6}(\Phi_{4} - \Phi_{2}) + Q,$$

$$(4)$$

где

б)

a)

Тогда можно записать уравнения движения системы в виде

$$\begin{cases} \dot{\boldsymbol{\Phi}} = \mathbf{A}\boldsymbol{\Phi} + \mathbf{B}\mathbf{U}; \\ \mathbf{Y} = \mathbf{C}\boldsymbol{\Phi}. \end{cases}$$
(6)

Здесь **Y** — вектор измеряемой величины, **A** — матрица уравнений в пространстве состояний, Φ — вектор-столбец переменных состояния, **B** — вектор-столбец управляющего параметра, **U** — вектор входного воздействия, **C** — вектор-столбец измерений:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -(q_1 + q_2) & -(q_3 + q_4) & q_2 & q_3 \\ 0 & 0 & 0 & 1 \\ q_5 & q_6 & -q_5 & -q_6 \end{bmatrix}, \quad \mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{U} = (0 \quad 0 \quad 0 \quad Q), \quad \mathbf{C} = (1 \quad 0 \quad 0 \quad 0).$$

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2013. Т. 56, № 10

Применив преобразование Лапласа, получим передаточную функцию системы в виде:

$$W(s) = \frac{2,438s + 2167}{s^4 + 19,13s^3 + 7648s^2 + 5,763 \cdot 10^{-4}s + 1,1127 \cdot 10^{-6}}.$$
(7)

Для удобства компьютерного моделирования было использовано *z*-преобразование:

$$W(z) = \frac{1,042 \cdot 10^{-7} z^3 + 7,287 \cdot 10^{-7} z^2 + 4,333 \cdot 10^{-7} z + 5,118 \cdot 10^{-9}}{z^4 - 3,726z^3 + 5,368z^2 - 3,55z + 0,9088}.$$
(8)

Сравнение передаточных функций (7) и (8) показывает, что при работе на частоте до 10 Гц их частотные характеристики не различаются. Для дискретной передаточной функции (8) определена переходная функция, приведенная на рис. 3, *a*.

В результате моделирования получены графики зависимости изменения выходного звена системы на ступенчатое входное воздействие (рис. 3, б).

Проанализировав полученные зависимости, можно сделать вывод, что результаты моделирования динамической системы в аналитическом виде и в виде моделей MatLab Simulink и SimMechanics практически равнозначны. Основные временные показатели качества динамической системы удовлетворяют требованиям к точности. Перерегулирование (склонность системы к колебаниям) составляет 33 %, длительность переходного процесса (быстродействие системы) 0,7 с, а степень затухания 1,7. Подобный график переходной функции свидетельствует об оптимальном характере выбора параметров динамической модели.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ноздрин М. А., Красковский А. А., Монахов Ю. С. Системные проблемы создания устройств для сканирования подземных камер // Изв. вузов. Приборостроение. 2012. Т. 55, № 6. С. 15—19.
- 2. *Мусалимов В. М., Ноздрин М. А., Родин Н. В.* Динамический анализ уплотнительного элемента скважинного прибора // Там же. 2010. Т. 53, № 2. С. 16—19.
- 3. *Мусалимов В. М., Сергушин П. А.* Моделирование динамики магнитостатического вариометра // Науч.-техн. вестн. информационных технологий, механики и оптики. 2008. № 57. С. 29—32.

Сведения об авторах

Виктор Михайлович Мусалимов		д-р техн. наук, профессор; Санкт-Петербургский национальный ис- следовательский университет информационных технологий, механики и оптики, кафедра мехатроники; заведующий кафедрой; E-mail: musvm@ya.ru
Георгий Борисович Заморуев		канд. техн. наук, доцент; Санкт-Петербургский национальный иссле- довательский университет информационных технологий, механики и оптики, кафедра мехатроники; E-mail: georgyz09@gmail.com
Юрий Сергеевич Монахов	_	Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра мехатро- ники; старший преподаватель; E-mail: monahovv@yandex.ru
Рекомендована кафедрой		Поступила в редакцию

Рекомендована кафедр мехатроники

Поступила в редакцию 20.06.13 г.